
Object Storage Service

Java SDK Developer Guide

Date 2020-02-26

Contents

1 SDK Download Links...1

2 Example Programs...2

3 Quick Start.. 4
3.1 Before You Start... 4
3.2 Creating Access Keys.. 4
3.3 Preparing a Development Environment.. 5
3.4 Installing the SDK..6
3.5 Obtaining Endpoints.. 6
3.6 Initializing an Instance of ObsClient...6
3.7 Creating a Bucket.. 7
3.8 Uploading an Object.. 7
3.9 Downloading an Object.. 7
3.10 Listing Objects..8
3.11 Deleting an Object... 8
3.12 General Examples of ObsClient... 8

4 Initialization... 10
4.1 Configuring the AK and SK..10
4.2 Creating an Instance of ObsClient.. 10
4.3 Configuring an Instance of ObsClient..12
4.4 Configuring SDK Logging... 17
4.5 Configuring Server-Side Certificate Verification...17
4.6 Transparently Transferring the AK and SK... 18

5 Fault Locating.. 19
5.1 Methods... 19
5.2 Notable Issues.. 20

6 Bucket Management.. 24
6.1 Creating a Bucket..24
6.2 Listing Buckets... 25
6.3 Deleting a Bucket..26
6.4 Identifying Whether a Bucket Exists.. 26
6.5 Obtaining Bucket Metadata.. 26

Object Storage Service
Java SDK Developer Guide Contents

2020-02-26 ii

6.6 Managing Bucket ACLs... 27
6.7 Managing Bucket Policies.. 30
6.8 Obtaining a Bucket Location.. 31
6.9 Obtaining Storage Information About a Bucket.. 32
6.10 Setting or Obtaining a Bucket Quota..32
6.11 Setting or Obtaining the Storage Class of a Bucket...32

7 Object Upload.. 35
7.1 Object Upload Overview.. 35
7.2 Performing a Streaming Upload..35
7.3 Performing a File-Based Upload..36
7.4 Obtaining Upload Progresses... 36
7.5 Creating a Folder...37
7.6 Setting Object Properties... 38
7.7 Performing a Multipart Upload... 40
7.8 Configuring Lifecycle Management..49
7.9 Performing an Appendable Upload.. 49
7.10 Performing a Resumable Upload.. 50
7.11 Performing a Browser-Based Upload...52

8 Object Download...54
8.1 Object Download Overview.. 54
8.2 Performing a Streaming Download..54
8.3 Performing a Partial Download... 55
8.4 Obtaining Download Progresses... 55
8.5 Performing a Conditioned Download.. 56
8.6 Rewriting Response Headers.. 57
8.7 Obtaining Customized Metadata.. 58
8.8 Downloading a Cold Object.. 59
8.9 Performing a Resumable Download.. 59

9 Object Management...63
9.1 Obtaining Object Properties..63
9.2 Managing Object ACLs... 63
9.3 Listing Objects..65
9.4 Deleting Objects.. 68
9.5 Copying an Object.. 69

10 Authorized Access... 74
10.1 Using a URL for Authorized Access.. 74

11 Versioning Management... 85
11.1 Versioning Overview..85
11.2 Setting Versioning Status for a Bucket... 85
11.3 Viewing Versioning Status of a Bucket... 87

Object Storage Service
Java SDK Developer Guide Contents

2020-02-26 iii

11.4 Obtaining a Versioning Object...87
11.5 Copying a Versioning Object.. 87
11.6 Restoring a Versioning Cold Object... 88
11.7 Listing Versioning Objects... 88
11.8 Setting or Obtaining a Versioning Object ACL...92
11.9 Deleting Versioning Objects... 93

12 Lifecycle Management...94
12.1 Lifecycle Management Overview.. 94
12.2 Setting Lifecycle Rules.. 95
12.3 Viewing Lifecycle Rules...96
12.4 Deleting Lifecycle Rules..96

13 CORS...97
13.1 CORS Overview... 97
13.2 Setting CORS Rules.. 97
13.3 Viewing CORS Rules.. 98
13.4 Deleting CORS Rules... 98

14 Access Logging...99
14.1 Logging Overview.. 99
14.2 Enabling Bucket Logging... 99
14.3 Viewing Bucket Logging.. 100
14.4 Disabling Bucket Logging..100

15 Static Website Hosting..101
15.1 Static Website Hosting Overview... 101
15.2 Website File Hosting... 101
15.3 Setting Website Hosting.. 102
15.4 Viewing Website Hosting Settings... 103
15.5 Deleting Website Hosting Settings.. 103

16 Event Notification...104
16.1 Event Notification Overview.. 104
16.2 Setting Event Notification... 104
16.3 Viewing Event Notification Settings.. 104
16.4 Disabling Event Notification.. 105

17 Troubleshooting.. 106
17.1 HTTP Status Codes.. 106
17.2 OBS Server-Side Error Codes.. 108
17.3 SDK Custom Exceptions... 117
17.4 SDK Common Response Headers... 118
17.5 Log Analysis... 118

18 FAQs... 121
18.1 How Can I Create a Folder?... 121

Object Storage Service
Java SDK Developer Guide Contents

2020-02-26 iv

18.2 How Can I List All Objects in a Bucket?... 121
18.3 How Can I Use a URL for Authorized Access?... 121
18.4 How Can I Upload an Object in Browser-Based Mode?... 121
18.5 How Can I Download a Large Object in Multipart Mode?..121
18.6 What Can I Do to Implement Server-Side Root Certificate Verification?...121
18.7 How Can I Set an Object to Be Accessible to Anonymous Users?..122
18.8 How Can I Identify the Endpoint and Region of OBS?... 122
18.9 What Is the Retry Mechanism of SDK?.. 122
18.10 How Do I Obtain the Static Website Access Address of a Bucket?..122
18.11 How Do I Obtain the Object URL?.. 123
18.12 How to Improve the Speed of Uploading Large Files over the Public Network?................................... 123
18.13 How Do I Stop an Ongoing Upload Task?.. 123
18.14 How Can I Perform a Multipart Upload?.. 124
18.15 How Can I Perform a Download in Multipart Mode?.. 124
18.16 How Can I Obtain the AK and SK?.. 124
18.17 How Do I Confirm That the Uploaded Object Has Overwritten the Existing Object in the Bucket
with the Same Name?... 125
18.18 Does the SDK Support Uploading, Downloading, or Copying Objects in a Batch?................................125

A API Reference...128

B Change History.. 129

Object Storage Service
Java SDK Developer Guide Contents

2020-02-26 v

1 SDK Download Links

SDK Source Codes and API Documentation
● Latest version of OBS Java SDK: Click here to download.
● OBS Java SDK API document: OBS Java SDK API Reference

Compatibility
● Recommended JDK versions: 7, 8, 9, and 10
● Third-party dependency: This version is not completely compatible with earlier

versions (2.1.x). httpclient4.x is replaced with okhttp3.
● Namespace: Compatible with earlier versions (2.1.x). All external APIs are

contained in the com.obs.services, com.obs.services.model, and
com.obs.services.exception packages.

● API functions: Compatible with earlier versions (2.1.x).

Object Storage Service
Java SDK Developer Guide 1 SDK Download Links

2020-02-26 1

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/current/java/en/java.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/apidoc/en/java/index.html

2 Example Programs

OBS Java SDK provides abundant example programs for your reference and direct
use. These programs can be obtained from the OBS Java SDK. For example, files in
eSDK_Storage_OBS_<VersionId>_Java.zip obtained by decompressing
eSDK_Storage_OBS_<VersionId>_Java/samples_java are example programs.
Alternatively, you can click code package names provided in the following table to
obtain corresponding example programs.

Example programs include:

Sample Code Description

BucketOperationsSample How to use bucket-related APIs.

ObjectOperationsSample How to use object-related APIs.

DownloadSample How to download an object.

CreateFolderSample How to create a folder.

DeleteObjectsSample How to delete objects in a batch.

ListObjectsSample How to list objects.

ListVersionsSample How to list versioning objects.

ListObjectsInFolderSample How to list objects in a folder.

ObjectMetaSample How to customize object metadata.

SimpleMultipartUploadSample How to perform a multipart upload.

RestoreObjectSample How to download Cold objects.

ConcurrentCopyPartSample How to concurrently copy parts of a
large object.

ConcurrentDownloadObjectSample How to concurrently download parts
of a large object.

ConcurrentUploadPartSample How to concurrently upload parts of a
large object.

Object Storage Service
Java SDK Developer Guide 2 Example Programs

2020-02-26 2

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/BucketOperationsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ObjectOperationsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/DownloadSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/CreateFolderSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/DeleteObjectsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ListObjectsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ListVersionsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ListObjectsInFolderSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ObjectMetaSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/SimpleMultipartUploadSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/RestoreObjectSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ConcurrentCopyPartSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ConcurrentDownloadObjectSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ConcurrentUploadPartSample.zip

Sample Code Description

PostObjectSample How to perform a browser-based
upload.

TemporarySignatureSample How to use URLs for authorized
access.

GetTokenSample How to obtain the security token.

Object Storage Service
Java SDK Developer Guide 2 Example Programs

2020-02-26 3

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/PostObjectSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/TemporarySignatureSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/GetTokenSample.zip

3 Quick Start

3.1 Before You Start
● Ensure that you are familiar with OBS basic concepts from Help Center, such

as bucket, object, region, and AK and SK.
● You can see General Examples of ObsClient to understand how to call OBS

Java SDK APIs in a general manner.
● After an API calling is complete using an instance of ObsClient, view whether

an exception is thrown. If no, the return value is valid. If yes, the operation
fails and you can obtain the error information from an instance of
ObsException.

● After an API is successfully called by an instance of ObsClient, an instance of
ResponseHeader containing the response headers will be returned.

● Some features are available only in some regions. If the HTTP status code of
an API is 405, check whether the region supports this feature.

3.2 Creating Access Keys
OBS uses AKs and SKs in user accounts for signature verification to ensure that
only authorized accounts can access specified OBS resources. Detailed
explanations about AK and SK are as follows:

● An access key ID (AK) defines a user who accesses the OBS system. An AK
belongs to only one user, but one user can have multiple AKs. The OBS
system recognizes the users who access the system by their access key IDs.

● A secret access key (SK) is the key used by users to access OBS. It is the
authentication information generated based on the AK and the request
header. An SK matches an AK, and they group into a pair.

Access keys are classified into permanent access keys (AK/SK) and temporary
access keys (AK/SK and security token). Permanent access keys are valid for a year
after creation. Each user can create up to two valid AK/SK pairs. Temporary access
keys can be used to access OBS only within the specified validity period. After the
temporary access keys expire, they need to be obtained again. For security
purposes, you are advised to use temporary access keys to access OBS, or

Object Storage Service
Java SDK Developer Guide 3 Quick Start

2020-02-26 4

https://support.hc.sbercloud.ru/obs/index.html

periodically update your access keys if you use permanent access keys. The
following describes how to obtain access keys of these two types.

Permanent Access Keys
1. Log in to OBS Console.
2. In the upper right corner of the page, hover the cursor over the username and

choose My Credentials.
3. On the My Credentials page, select Access Keys in the navigation pane on

the left.
4. On the Access Keys page, click Create Access Key.
5. In the Create Access Key dialog box that is displayed, enter the password and

verification code.

● If you have not bound an email address or mobile number, enter only the
password.

● If you have bound an email address and a mobile number, you can select the
verification by either email or mobile phone.

6. Click OK.
7. In the Download Access Key dialog box that is displayed, click OK to save the

access keys to your browser's default download path.
8. Open the downloaded credentials.csv file to obtain the access keys (AK and

SK).

● A user can create a maximum of two valid access keys.
● Keep the access key properly. If you click Cancel in the dialog box, the access keys

will not be downloaded, and cannot be obtained later. You can re-create access
keys if you need to use them.

Temporary Access Keys
The temporary AK/SK and security token are temporary access tokens issued by
the system to users. The validity period ranges from 15 minutes to 24 hours which
can be set using APIs. After the validity period expires, users need to obtain the
access keys again. The temporary AK/SK and security token shall observe the
principle of least privilege. When the temporary AK/SK are used for
authentication, the temporary AK/SK and security token must be used at the same
time.

For details about how to obtain temporary access keys, see Obtaining a
Temporary AK/SK.

For details about how to use temporary access keys, see 4.2 Creating an Instance
of ObsClient.

3.3 Preparing a Development Environment
● Download a recommended version of JDK from the Oracle's official website

and install it.

Object Storage Service
Java SDK Developer Guide 3 Quick Start

2020-02-26 5

https://docs.prod-cloud-ocb.orange-business.com/en-us/api/iam/iam_04_0002.html
https://docs.prod-cloud-ocb.orange-business.com/en-us/api/iam/iam_04_0002.html
http://www.oracle.com/technetwork/java/archive-139210.html

● The latest version of Eclipse IDE for Java Developers is required and can be
downloaded from the Eclipse's official website.

3.4 Installing the SDK

Import the JAR files in the Eclipse Java project as follows:

Step 1 Download the OBS Java SDK.

Step 2 Decompress the SDK.

Step 3 Copy all JAR files in the decompressed libs folder to your project.

Step 4 On Eclipse, select the project and choose Properties > Java Build Path > Add
JARs.

Step 5 Select all JAR files that have been copied in step 3, click OK to finish importing
JAR files.

----End

3.5 Obtaining Endpoints
● You can click here to view the endpoints and regions enabled for OBS.

NO TICE

The SDK allows you to pass endpoints with or without the protocol name. Suppose
the endpoint you obtained is your-endpoint. The endpoint passed when
initializing an instance of ObsClient can be http://your-endpoint, https://your-
endpoint, or your-endpoint.

3.6 Initializing an Instance of ObsClient
Each time you want to send an HTTP/HTTPS request to OBS, you must create an
instance of ObsClient. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Use the instance to access OBS.

// Close obsClient.
obsClient.close();

For more information, see chapter "Initialization."

Object Storage Service
Java SDK Developer Guide 3 Quick Start

2020-02-26 6

http://www.eclipse.org/downloads/eclipse-packages/
https://support.hc.sbercloud.ru/en-us/endpoint/index.html

3.7 Creating a Bucket
A bucket is a global namespace of OBS and is a data container. It functions as a
root directory of a file system and can store objects. The following code shows
how to create a bucket:

obsClient.createBucket("bucketname");

● Bucket names are globally unique. Ensure that the bucket you create is named
differently from any other bucket.

● A bucket name must comply with the following rules:

● Contains 3 to 63 characters, chosen from lowercase letters, digits, hyphens (-), and
periods (.), and starts with a digit or letter.

● Cannot be an IP-like address.

● Cannot start or end with a hyphen (-) or period (.)

● Cannot contain two consecutive periods (.), for example, my..bucket.

● Cannot contain periods (.) and hyphens (-) adjacent to each other, for example,
my-.bucket or my.-bucket.

● If you create buckets of the same name, no error will be reported and the bucket
properties comply with those set in the first creation request.

● For more information, see 6.1 Creating a Bucket.

3.8 Uploading an Object
Sample code:

obsClient.putObject("bucketname", "objectname", new ByteArrayInputStream("Hello OBS".getBytes()));

For more information, see 7.1 Object Upload Overview.

3.9 Downloading an Object
Sample code:

ObsObject obsObject = obsClient.getObject("bucketname", "objectname");
InputStream content = obsObject.getObjectContent();
if (content != null)
{
 BufferedReader reader = new BufferedReader(new InputStreamReader(content));
 while (true)
 {
 String line = reader.readLine();
 if (line == null)
 break;
 System.out.println("\n" + line);
 }
 reader.close();
}

Object Storage Service
Java SDK Developer Guide 3 Quick Start

2020-02-26 7

● When you call ObsClient.getObject, an instance of ObsObject will be returned. This
instance contains the contents and properties of the object.

● When you call ObsObject.getObjectContent to obtain an object input stream, you can
read the input stream to obtain its contents. Close the input stream after use.

● For more information, see 8.1 Object Download Overview.

3.10 Listing Objects
After objects are uploaded, you may want to view the objects contained in a
bucket. Sample code is as follows:

ObjectListing objectListing = obsClient.listObjects("bucketname");
for(ObsObject obsObject : objectListing.getObjects()){
 System.out.println(" - " + obsObject.getObjectKey() + " " + "(size = " +
obsObject.getMetadata().getContentLength() + ")");
}

● When you call ObsClient.listObjects, an instance of ObjectListing will be returned. This
instance contains the response of the listObject request. You can use
ObjetListing.getObjects to obtain description of all of the listed objects.

● In the previous sample code, 1000 objects will be listed, by default.
● For more information, see Listing Objects.

3.11 Deleting an Object
Sample code:

obsClient.deleteObject("bucketname", "objectname");

3.12 General Examples of ObsClient
After an API calling is complete using an instance of ObsClient, view whether an
exception is thrown. If no, the return value is valid and an instance of the
HeaderResponse class (or of its sub-class) is returned. If yes, obtain the error
information from the instance of ObsException.

Sample code:

// You can reserve only one global instance of ObsClient in your project.
// ObsClient is thread-safe and can be simultaneously used by multiple threads.
ObsClient obsClient = null;
try
{
 String endPoint = "https://your-endpoint";
 String ak = "*** Provide your Access Key ***";
 String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
 obsClient = new ObsClient(ak, sk, endPoint);
 // Call APIs to perform related operations, for example, uploading an object.
 HeaderResponse response = obsClient.putObject("bucketname", "objectname", new File("localfile")); //
localfile indicates the path of the local file to be uploaded. You need to specify the file name.
 System.out.println(response);
}

Object Storage Service
Java SDK Developer Guide 3 Quick Start

2020-02-26 8

catch (ObsException e)
{
 System.out.println("HTTP Code: " + e.getResponseCode());
 System.out.println("Error Code:" + e.getErrorCode());
 System.out.println("Error Message: " + e.getErrorMessage());

 System.out.println("Request ID:" + e.getErrorRequestId());
 System.out.println("Host ID:" + e.getErrorHostId());
}finally{
 // Close the instance of ObsClient. If this instance is a global one, you do not need to close it every time
you complete calling a method.
 // After you call the ObsClient.close method to close an instance of ObsClient, the instance cannot be
used any more.
 if(obsClient != null){
 try
 {
 // obsClient.close();
 }
 catch (IOException e)
 {
 }
 }
}

Object Storage Service
Java SDK Developer Guide 3 Quick Start

2020-02-26 9

4 Initialization

4.1 Configuring the AK and SK
To use OBS, you need a valid pair of AK and SK for signature authentication. For
details, see 3.2 Creating Access Keys.

After obtaining the AK and SK, you can start initialization.

4.2 Creating an Instance of ObsClient
ObsClient functions as the Java client for accessing OBS. It offers callers a series of
APIs for interaction with OBS and is used for managing and performing operations
on resources, such as buckets and objects, stored in OBS. To use OBS Java SDK to
send a request to OBS, you need to initialize an instance of ObsClient and modify
the default configurations in ObsConfiguration based on actual needs.

● If you use the endpoint to create an instance of ObsClient, all parameters are
in their default values and cannot be modified.
– Sample code for creating an instance of ObsClient using permanent

access keys (AK/SK):
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Use the instance to access OBS.
// Close ObsClient.
obsClient.close();

– Sample code for creating an instance of ObsClient using temporary
access keys (AK/SK and security token):
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
String securityToken = "*** Provide your Security Token ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, securityToken, endPoint);
// Use the instance to access OBS.
// Close ObsClient.
obsClient.close();

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 10

For details about how to obtain and use temporary AK/SK and security token, see
2 Example Programs.

– Sample code for creating an instance of ObsClient using
BasicCredentialsProvider:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(new BasicObsCredentialsProvider(ak, sk), endPoint);
// Use the instance to access OBS.
// Close ObsClient.
obsClient.close();

– Sample code for creating an instance of ObsClient using
EnvironmentVariableObsCredentialsProvider:
String endPoint = "https://your-endpoint";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(new EnvironmentVariableObsCredentialsProvider(),
endPoint);
// Use the instance to access OBS.
// Close ObsClient.
obsClient.close();

In the preceding code, the access keys are found in the system environment
variables. You need to define OBS_ACCESS_KEY_ID and
OBS_SECRET_ACCESS_KEY in the system environment variables to represent the
permanent AK and SK respectively.

– Sample code for creating an instance of ObsClient using
EcsObsCredentialsProvider:
String endPoint = "https://your-endpoint";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(new EcsObsCredentialsProvider(), endPoint);
// Use the instance to access OBS.
// Close ObsClient.
obsClient.close();

When an application is deployed on an ECS, the instance of ObsClient created
using the preceding methods automatically obtains the temporary access keys
from the ECS and updates them periodically.

NO TICE

Ensure that the UTC time of the server is the same as that of the
environment where the application is deployed. Otherwise, the temporary
access keys may fail to be updated in time.

● In addition to the preceding methods, you can also search in sequence to
obtain the corresponding access keys from the environment variables and
ECSs.
– Sample code for creating an instance of ObsClient using the access keys

obtained by searching in sequence:
String endPoint = "https://your-endpoint";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(new OBSCredentialsProviderChain(), endPoint);

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 11

// Use the instance to access OBS.
// Close ObsClient.
obsClient.close();

The preceding method specifies that the access keys are searched from the
predefined list in sequence. By default, the system provides two predefined
search methods: obtaining the access keys from the environment variables and
obtaining from ECSs. ObsClient searches for the access keys from the
environment variables first and then from ECSs. In this case, ObsClient is created
using the first pair of access keys obtained in the search.

● If you use ObsConfiguration to create an instance of ObsClient, you can set
configuration parameters as needed during the creation. After the instance is
created, the parameters cannot be modified. For parameter details, see 4.3
Configuring an Instance of ObsClient. The preceding methods of creating an
instance of ObsClient support ObsConfiguration. The sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an ObsConfiguration instance.
ObsConfiguration config = new ObsConfiguration();
config.setEndPoint(endPoint);
config.setSocketTimeout(30000);
config.setMaxErrorRetry(1);

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, config);

// Create an instance of ObsClient using Provider.
// ObsClient obsClient = new ObsClient(new EnvironmentVariableObsCredentialsProvider(), config);
// ObsClient obsClient = new ObsClient(new EcsObsCredentialsProvider(), config);

// Use the instance to access OBS.

// Close ObsClient.
obsClient.close();

● The project can contain one or more instances of ObsClient.
● ObsClient is thread-safe and can be simultaneously used by multiple threads.

NO TICE

After you call ObsClient.close to close an instance of ObsClient, the instance
cannot be used any more.

4.3 Configuring an Instance of ObsClient
When you call the ObsConfiguration configuration class to create an instance of
ObsClient, you can configure the agent, timeout duration, maximum allowed
number of connections, and some other parameters listed in the following table.

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 12

Parameter Description Method Recomme
nded
Value

connectionTime
out

Timeout period for
establishing an
HTTP/HTTPS
connection, in ms.
The default value is
60,000.

ObsConfiguration.setCon
nectionTimeout

[10000,
60000]

socketTimeout Timeout duration
for transmitting
data at the Socket
layer, in ms. The
default value is
60,000.

ObsConfiguration.setSock
etTimeout

[10000,
60000]

idleConnectionTi
me

Allowed connection
idle time, in ms. If a
connection exceeds
the specified value,
the connection will
be closed. The
default value is
30,000.

ObsConfiguration.setIdle
ConnectionTime

Default

maxIdleConnecti
ons

Maximum number
of allowed idle
connections in the
connection pool.
The default value is
1000.

ObsConfiguration.setMax
IdleConnections

N/A

maxConnections Maximum number
of concurrent HTTP
requests. The
default value is
1000.

ObsConfiguration.setMax
Connections

Default

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 13

Parameter Description Method Recomme
nded
Value

maxErrorRetry Maximum number
of retry attempts
(caused by
abnormal requests,
500, 503, and other
errors). The default
value is 3.
NOTE

This parameter is
invalid in object
upload and
download APIs if an
interruption occurs
after an upload or
download task
enters the data flow
processing phase. In
this case, no retry is
performed.

ObsConfiguration.setMax
ErrorRetry

[0, 5]

endPoint Endpoint for
accessing OBS,
which contains the
protocol type,
domain name (or
IP address), and
port number. For
example, https://
your-endpoint:443.

ObsConfiguration.setEnd
Point

N/A

httpProxy HTTP proxy
configuration. This
parameter is left
blank by default.

ObsConfiguration.setHttp
Proxy

N/A

validateCertifi-
cate

Whether to verify
the server
certificate. The
default value is
false.

ObsConfiguration.setVali
dateCertificate

N/A

verifyResponseC
ontentType

Whether to verify
ContentType of
the response
header. The default
value is true.

ObsConfiguration.setVeri
fyResponseContentType

Default

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 14

Parameter Description Method Recomme
nded
Value

uploadStreamRe
tryBufferSize

Size of the cache
used for uploading
a stream object, in
bytes. The default
size is 512 KB.

ObsConfiguration.setUpl
oadStreamRetryBuffer-
Size

N/A

readBufferSize Cache size for
downloading the
object from socket
streams, in bytes.
Value -1 indicates
that cache is not
configured. The
default value is -1.

ObsConfiguration.setRea
dBufferSize

N/A

writeBufferSize Cache size for
uploading the
object to socket
streams, in bytes.
Value -1 indicates
that cache is not
configured. The
default value is -1.

ObsConfiguration.setWrit
eBufferSize

N/A

socketWriteBuff
erSize

Buffer size for
sending a socket, in
bytes. This
parameter
corresponds to
java.net.SocketOp
tions.SO_SNDBUF.
The default value is
-1, which indicates
no limitation.

ObsConfiguration.setSock
etWriteBufferSize

Default
value

socketReadBuffe
rSize

Buffer size for
receiving a socket,
in bytes. This
parameter
corresponds to
java.net.SocketOp
tions.SO_RCVBUF.
The default value is
-1, which indicates
no limitation.

ObsConfiguration.setSock
etReadBufferSize

Default
value

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 15

Parameter Description Method Recomme
nded
Value

keyManagerFact
ory

Factory used for
generating
javax.net.ssl.KeyM
anager. This
parameter is left
blank by default.

ObsConfiguration.setKey
ManagerFactory

N/A

trustManagerFa
ctory

Factory used for
generating
javax.net.ssl.Trust
Manager. This
parameter is left
blank by default.

ObsConfiguration.setTrus
tManagerFactory

N/A

isStrictHostnam
eVerification

Whether to strictly
verify the server-
side host name.
The default value is
false.

ObsConfiguration.setIsStr
ictHostnameVerification

N/A

keepAlive Whether to use
persistent
connections to
access OBS. The
default value is
true.

ObsConfiguration.setKee
pAlive

N/A

cname Whether to use
self-defined
domain name to
access OBS. The
default value is
false.

ObsConfiguration.setCna
me

N/A

sslProvider Provider of
SSLContext. The
SSLContext
provided by JDK is
used by default.

ObsConfiguration.setSslP
rovider

N/A

httpProtocolTyp
e

HTTP protocol type
used for accessing
OBS servers. The
default protocol is
HTTP 1.1.

ObsConfiguration.setHttp
ProtocolType

N/A

httpDispatcher Customize a
dispatcher.

ObsConfiguration.setHttp
Dispatcher

N/A

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 16

● Parameters whose recommended value is N/A need to be set according to the actual
conditions.

● To improve the upload and download performance of files in the case that the network
bandwidth meets the requirements, you can tune the socketWriteBufferSize,
sockeReadBufferSize, readBufferSize, and writeBufferSize parameters.

● If the network is unstable, you are advised to set larger values for connectionTimeout
and socketTimeout.

● If the value of endPoint does not contain any protocol, HTTPS is used by default.

● For the sake of high DNS resolution performance and OBS reliability, you can set
endPoint only to the domain name of OBS, instead of the IP address.

4.4 Configuring SDK Logging
OBS Java SDK provides the logging function, based on the Apache Log4j2 open
library. The SDK records WARN logs to the path represented by the JDK system
variable user.dir, by default. You can modify log configuration files to configure
logging based on your needs. The procedure is as follows:

Step 1 Find the log4j2.xml file in the OBS Java SDK development package.

Step 2 Modify log levels and save paths in the log4j2.xml file based on actual needs.

Step 3 Save the log4j2.xml file to the classpath root directory, or call
Log4j2Configurator.setLogConfig to specify the save path of log4j2.xml directly.

----End

● For details about SDK logs, see 17.5 Log Analysis.

4.5 Configuring Server-Side Certificate Verification
OBS Java SDK supports server-side certificate verification to ensure that OBS is
provided by trusted servers. The following details how to configure server
certificate verification in Windows. (In Linux, replace %JAVA_HOME% with
$JAVA_HOME.)

If the root certificate on the OBS server is issued by an authoritative CA, skip steps 1 to 3.
(Root certificates issued by authoritative CAs are in the certificate library of JDK.)

Step 1 Obtain the root certificate of the OBS server (for example, open Internet Explorer
and choose Internet Options > Content > Certificates to export the certificate)
and save it by the name of obs.cer.

Step 2 Run the %JAVA_HOME%/bin/keytool -import -alias obs -file obs.cer -storepass
changeit -keystore %JAVA_HOME%/jre/lib/security/cacerts command to
import the certificate.

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 17

Step 3 Run the %JAVA_HOME%/bin/keytool -list -v -alias obs -storepass changeit -
keystore %JAVA_HOME%/jre/lib/security/cacerts command to view whether
the certificate is successfully imported.

Step 4 Enable server certificate verification
(ObsConfiguration.setValidateCertificate(true)).

----End

4.6 Transparently Transferring the AK and SK
OBS Java SDK provides SecretFlexibleObsClient that supports transparent
transfer of AKs and SKs in API functions. Sample code is as follows:

String endPoint = "https://your-endpoint";
// Create an ObsConfiguration instance.
ObsConfiguration config = new ObsConfiguration();
config.setEndPoint(endPoint);

// Create a SecretFlexibleObsClient instance.
SecretFlexibleObsClient obsClient = new SecretFlexibleObsClient(config);
// Use the instance to access OBS.
String ak1 = "*** Provide your Access Key 1 ***";
String sk1 = "*** Provide your Secret Key 1 ***";
obsClient.listBuckets(ak1, sk1);

String ak2 = "*** Provide your Access Key 2 ***";
String sk2 = "*** Provide your Secret Key 2 ***";
obsClient.listBuckets(ak2, sk2);

// Close obsClient.
obsClient.close();

SecretFlexibleObsClient is inherited from ObsClient and can be used as ObsClient.

Object Storage Service
Java SDK Developer Guide 4 Initialization

2020-02-26 18

5 Fault Locating

5.1 Methods
If problems occur when using the OBS Java SDK, you can perform the following
steps to analyze and locate the problems.

Step 1 Make sure that the latest version of OBS Java SDK is used. Click here to download
the latest version.

Step 2 Make sure that the logging function of OBS Java SDK is enabled. For details about
how to enable the function, see the Log Analysis section. The recommended log
level is WARN.

Step 3 Make sure that the program code of the OBS Java SDK complies with General
Examples of ObsClient. All ObsClient APIs are processed with exception handling.
The following is an example code of uploading an object:
ObsClient obsClient = null;
try
{
 String endPoint = "https://your-endpoint";
 String ak = "*** Provide your Access Key ***";
 String sk = "*** Provide your Secret Key ***";
 obsClient = new ObsClient(ak, sk, endPoint);
 HeaderResponse response = obsClient.putObject("bucketname", "objectname", new
ByteArrayInputStream("Hello OBS".getBytes()));
 // Optional: After the API is successfully called, record the HTTP status code and request ID returned by
the server.
 System.out.println(response.getStatusCode());
 System.out.println(response.getRequestId());
}
catch (ObsException e)
{
 // Recommended: When an exception occurs, record the HTTP status code, server-side error code, and
request ID returned by the server.
 System.out.println("HTTP Code: " + e.getResponseCode());
 System.out.println("Error Code:" + e.getErrorCode());
 System.out.println("Request ID:" + e.getErrorRequestId());
 // Recommended: When an exception occurs, record the stack information.
 e.printStackTrace(System.out);
}

You can click here to view the details about ObsException.

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

2020-02-26 19

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/current/java/en/java.zip

Step 4 If an exception occurs when an ObsClient API is called, obtain the HTTP status
code and OBS server-side error code from ObsException or log file, and
compare them to locate the exception cause.

Step 5 If the exception cause cannot be found in step 4, obtain the request ID returned by
the OBS server from ObsException or log file and contact the OBS server O&M
team to locate the cause.

Step 6 If the request ID is unable to be obtained, collect the stack information of
ObsException and contact the OBS client O&M team to locate the cause.

----End

5.2 Notable Issues

SignatureDoesNotMatch
HTTP Code: 403
Error Code: SignatureDoesNotMatch

Possible causes are as follows:

1. The SK input into ObsClient initialization is incorrect. Solution: Make sure that
the SK is correct.

2. This problem is caused by a bug in the OBS Java SDK of an earlier version.
Solution: Upgrade the SDK to the latest version.

3. OBS Java SDK 2.1.x versions are incompatible with the dependent library
Apache HttpClient. Solution: Use the libraries of fixed versions: httpcore-4.4.4
and httpclient-4.5.3.

MethodNotAllowed
HTTP Code: 405
Error Code: MethodNotAllowed

This error occurs because a feature on which the ObsClient API depends has not
been rolled out on the requested OBS server. Contact the OBS O&M team for
further confirmation.

BucketAlreadyOwnedByYou
HTTP Code: 409
Error Code: BucketAlreadyOwnedByYou

In OBS, a bucket name must be globally unique. Solution: If this error occurs when
the ObsClient.createBucket is called, check whether the bucket exists. You can
use either of the following methods to check whether a bucket exists:

Method 1 (recommended): Call ObsClient.listBuckets to query the list of all
buckets that you own and check whether the bucket exists.

Method 2: Call ObsClient.headBucket to check whether the bucket exists.

ObsClient.headBucket can query only buckets in the current region, while
ObsClient.listBuckets can query buckets in all regions.

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

2020-02-26 20

BucketAlreadyExists
HTTP Code: 409
Error Code: BucketAlreadyExists

In OBS, a bucket name must be globally unique. Solution: If this error occurs when
ObsClient.createBucket is called, it indicates that the bucket has been created by
another user. Use another bucket name and try again.

Connection Timeout
HTTP Code: 408
Caused by: java.net.ConnectException: Connection timed out: connect
 at java.net.DualStackPlainSocketImpl.waitForConnect(Native Method)
 at java.net.DualStackPlainSocketImpl.socketConnect(DualStackPlainSocketImpl.java:85)

Possible causes are as follows:

1. The endpoint input into ObsClient initialization is incorrect. Solution: Verify to
make sure that the endpoint is correct.

2. The network between the OBS client and OBS server is abnormal. Solution:
Check the health status of the network.

3. The OBS domain name resolved by DNS is inaccessible. Solution: Contact the
OBS O&M team.

Read/Write Timeout
HTTP Code: 408
Error Code:RequestTimeOut
Caused by: java.net.SocketTimeoutException: timeout
 at okio.Okio$4.newTimeoutException(Okio.java:232)
 at okio.AsyncTimeout.exit(AsyncTimeout.java:285)
 at okio.AsyncTimeout$2.read(AsyncTimeout.java:241)

Possible causes are as follows:

1. The network latency between the OBS client and OBS server is too long.
Solution: Check the health status of the network.

2. The network between the OBS client and OBS server is abnormal. Solution:
Check the health status of the network.

Abnormal Returned Value -1
HTTP Code: -1

Possible causes are as follows:

1. The OBS Java SDK of an earlier version is used and a connection timeout or
read/write timeout occurs. Solution: See the solutions for connection timeout
and read/write timeout.

2. This problem is caused by a bug in the OBS Java SDK of an earlier version.
Solution: Download the latest SDK from here.

3. The server returns an abnormal result. As a result, an unexpected error occurs
when the SDK resolves the returned result. Solution: Obtain the request ID
returned by OBS server from the log and contact the OBS O&M team.

An Error Occurs During Program Startup After SDK Integration
Possible causes are as follows:

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

2020-02-26 21

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/current/java/en/java.zip

1. If the error ClassNotFoundException occurs during the program startup, it is
usually caused by the missing of a third-party dependent library. Solution: Add
the required third-party dependent library of the OBS Java SDK. See the
following table.

Library Name Version ID Description

okhttp 3.11.0 Component for sending
HTTP requests

okio 1.14.0 Component of okhttp

java-xmlbuilder 1.1 Component for
constructing and parsing
XML files

jackson-core 2.9.9 Component for
constructing and parsing
JSON files

jackson-databind 2.9.9 Component of jackson-
core

jackson-annotations 2.9.9 Component of jackson-
core

2. If the error NoClassDefFoundError occurs during the startup, it is usually

caused by Java class conflict. Solution: a) Check whether a third-party library
in the running environment contains multiple versions. b) Check whether the
running environment contains the OBS Java SDK software package (esdk-obs-
java-3.x.x.jar) of multiple versions.

Unable to Obtain Error Codes from ObsException
Possible causes are as follows:

1. An error is reported when ObsClient.getBucketMetadata or
ObsClient.getObjectMetadata is called. In this scenario, the server does not
return an error code because the request method used in the background is
HEAD. Solution: Call ObsException.getResponseCode to obtain the HTTP
status code to analyze the possible cause. For example, 403 indicates that the
user does not have the access permission, and 404 indicates that the bucket
or object does not exist. If the cause cannot be located, obtain the request ID
returned by the OBS server from ObsException and contact the OBS O&M
team.

2. The IP address of the endpoint obtained after DNS resolution during
ObsClient initialization is not a valid IP address of the OBS server. Solution:
Check whether the endpoint configuration is correct. If the endpoint
configuration is correct, contact the OBS O&M team.

UnknownHostException
Caused by: java.net.UnknownHostException: bucketname.unknowndomain.com
 at java.net.Inet6AddressImpl.lookupAllHostAddr(Native Method)
 at java.net.InetAddress$1.lookupAllHostAddr(InetAddress.java:901)
 at java.net.InetAddress.getAddressesFromNameService(InetAddress.java:1293)

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

2020-02-26 22

Possible causes are as follows:

1. The endpoint input during ObsClient initialization is incorrect. Solution: Verify
to make sure that the endpoint is correct.

2. DNS cannot resolve the OBS domain name. Solution: Contact the OBS O&M
team.

NullPointException
Exception in thread "main" java.lang.NullPointerException
 at com.obs.services.internal.RestStorageService.isCname(RestStorageService.java:1213)
 at com.obs.services.ObsClient.doActionWithResult(ObsClient.java:2805)

Possible causes are as follows:

1. ObsClient.close is called to close ObsClient and then another ObsClient API is
called. Solution: Call ObsClient.close to release resources only before exiting
the application.

2. This problem is caused by a bug in the OBS Java SDK of an earlier version.
Solution: Download the latest SDK from here.

Connection Leakage
A connection to xxx was leaked. Did you forget to close a response body?

This error occurs when ObsClient.getObject is not properly closed after it is called
to obtain the data flow of the object to be downloaded. Solution: Make sure that
the ObsObject.getObjectContent.close method is called in the finally statement
block to close the connection.

Problem in SDK Version Upgrade
The third-party dependent library of the SDK of an earlier version (2.1.x) is not
completely compatible with that of the new version SDK (3.x). If a program
startup error occurs after the earlier version is upgraded to the new version, see
An Error Occurs During Program Startup After SDK Integration. If the problem
persists, contact the OBS O&M team.

Others
For details, see FAQs.

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

2020-02-26 23

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/current/java/en/java.zip

6 Bucket Management

6.1 Creating a Bucket
You can call ObsClient.createBucket to create a bucket.

Creating a Bucket in Simple Mode
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Create a bucket.
try{
 // The bucket is successfully created.
 HeaderResponse response = obsClient.createBucket("bucketname");
 System.out.println(response.getRequestId());
}
catch (ObsException e)
{
 // Failed to create a bucket.
 System.out.println("HTTP Code: " + e.getResponseCode());
 System.out.println("Error Code:" + e.getErrorCode());
 System.out.println("Error Message: " + e.getErrorMessage());

 System.out.println("Request ID:" + e.getErrorRequestId());
 System.out.println("Host ID:" + e.getErrorHostId());
}

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 24

● Bucket names are globally unique. Ensure that the bucket you create is named
differently from any other bucket.

● A bucket name must comply with the following rules:
● Contains 3 to 63 characters, chosen from lowercase letters, digits, hyphens (-), and

periods (.), and starts with a digit or letter.
● Cannot be an IP-like address.
● Cannot start or end with a hyphen (-) or period (.)
● Cannot contain two consecutive periods (.), for example, my..bucket.
● Cannot contain periods (.) and hyphens (-) adjacent to each other, for example,

my-.bucket or my.-bucket.
● If you create buckets of the same name in a region, no error will be reported and the

bucket properties comply with those set in the first creation request.
● The bucket created in the previous example is of the default ACL (private), in the OBS

Standard storage class, and in the default location where the global domain resides.

Creating a Bucket with Parameters Specified
When creating a bucket, you can specify the ACL, storage class, and location for
the bucket. OBS provides three storage classes for buckets. For details, see 6.11
Setting or Obtaining the Storage Class of a Bucket. Sample code is as follows:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObsBucket obsBucket = new ObsBucket();
obsBucket.setBucketName("bucketname");
// Set the access permission for the bucket to public-read-write. (The default value is private.)
obsBucket.setAcl(AccessControlList.REST_CANNED_PUBLIC_READ);
// Set the storage class to OBS Cold.

obsBucket.setBucketStorageClass(StorageClassEnum.COLD);
// Set the location.
obsBucket.setLocation("bucketlocation");
// Create a bucket.
try{
 // The bucket is successfully created.
 HeaderResponse response = obsClient.createBucket(obsBucket);
 System.out.println(response.getRequestId());
}
catch (ObsException e)
{
 // Failed to create a bucket.
 System.out.println("HTTP Code: " + e.getResponseCode());
 System.out.println("Error Code:" + e.getErrorCode());
 System.out.println("Error Message: " + e.getErrorMessage());

 System.out.println("Request ID:" + e.getErrorRequestId());
 System.out.println("Host ID:" + e.getErrorHostId());
}

6.2 Listing Buckets
You can call ObsClient.listBuckets to list buckets. Sample code is as follows:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 25

String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// List buckets.
ListBucketsRequest request = new ListBucketsRequest();
request.setQueryLocation(true);
List<ObsBucket> buckets = obsClient.listBuckets(request);
for(ObsBucket bucket : buckets){
 System.out.println("BucketName:" + bucket.getBucketName());
 System.out.println("CreationDate:" + bucket.getCreationDate());
 System.out.println("Location:" + bucket.getLocation());
}

● Obtained bucket names are listed in the lexicographical order.

● Set ListBucketsRequest.setQueryLocation to true and then you can query the bucket
location when listing buckets.

6.3 Deleting a Bucket
You can call ObsClient.deleteBucket to delete a bucket. Sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Delete a bucket.
obsClient.deleteBucket("bucketname");

● Only empty buckets (without objects and part fragments) can be deleted.

● Bucket deletion is a non-idempotence operation and an error will be reported if the to-
be-deleted bucket does not exist.

6.4 Identifying Whether a Bucket Exists
You can call ObsClient.headBucket to identify whether a bucket exists. Sample
code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

boolean exists = obsClient.headBucket("bucketname");

6.5 Obtaining Bucket Metadata
You can call ObsClient.getBucketMetadata to obtain the metadata of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 26

String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketMetadataInfoRequest request = new BucketMetadataInfoRequest("bucketname");
request.setOrigin("http://www.a.com");
// Obtain the bucket metadata.
BucketMetadataInfoResult result = obsClient.getBucketMetadata(request);
System.out.println("\t:" + result.getDefaultStorageClass());
System.out.println("\t:" + result.getAllowOrigin());
System.out.println("\t:" + result.getMaxAge());
System.out.println("\t:" + result.getAllowHeaders());
System.out.println("\t:" + result.getAllowMethods());
System.out.println("\t:" + result.getExposeHeaders());

For details about values of methods, such as
BucketMetadataInfoResult.getAllowMethods, see the CORS configurations of the bucket.

6.6 Managing Bucket ACLs
A bucket ACL can be configured in three modes:

1. Specify a pre-defined access control policy during bucket creation.
2. Call ObsClient.setBucketAcl to specify a pre-defined access control policy.
3. Call ObsClient.setBucketAcl to set the ACL directly.

The following table lists the five permission types supported by OBS.

Permission Description Value in OBS Java SDK

READ A grantee with this permission for
a bucket can obtain the list of
objects in and metadata of the
bucket.
A grantee with this permission for
an object can obtain the object
content and metadata.

Permission.PERMISSION_
READ

WRITE A grantee with this permission for
a bucket can upload, overwrite,
and delete any object in the
bucket.
This permission is not applicable
to objects.

Permission.PERMISSION_
WRITE

READ_ACP A grantee with this permission
can obtain the ACL of a bucket or
object.
A bucket or object owner has this
permission permanently.

Permission.PERMISSION_
READ_ACP

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 27

https://support.hc.sbercloud.ru/en-us/usermanual/obs/obs_03_0325.html

Permission Description Value in OBS Java SDK

WRITE_ACP A grantee with this permission
can update the ACL of a bucket
or object.
A bucket or object owner has this
permission permanently.
A grantee with this permission
can modify the access control
policy and thus the grantee
obtains full access permissions.

Permission.PERMISSION_
WRITE_ACP

FULL_CONTROL A grantee with this permission for
a bucket has READ, WRITE,
READ_ACP, and WRITE_ACP
permissions for the bucket.
A grantee with this permission for
an object has READ, WRITE,
READ_ACP, and WRITE_ACP
permissions for the object.

Permission.PERMISSION_
FULL_CONTROL

There are five access control policies pre-defined in OBS, as described in the
following table:

Permission Description Value in OBS Java SDK

private The owner of a bucket or object
has the FULL_CONTROL
permission for the bucket or
object. Other users have no
permission to access the bucket
or object.

AccessControlList.REST_C
ANNED_PRIVATE

public-read If this permission is set for a
bucket, everyone can obtain the
list of objects, multipart uploads,
and object versions in the bucket,
as well as metadata of the
bucket.
If this permission is set for an
object, everyone can obtain the
content and metadata of the
object.

AccessControlList.REST_C
ANNED_PUBLIC_READ

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 28

Permission Description Value in OBS Java SDK

public-read-
write

If this permission is set for a
bucket, everyone can obtain the
object list in the bucket, multipart
uploads in the bucket, metadata
of the bucket; upload objects;
delete objects; initialize multipart
uploads; upload parts; combine
parts; copy parts; and abort
multipart uploads.
If this permission is set for an
object, everyone can obtain the
content and metadata of the
object.

AccessControlList.REST_C
ANNED_PUBLIC_READ_
WRITE

public-read-
delivered

If this permission is set for a
bucket, everyone can obtain the
object list, multipart uploads, and
bucket metadata in the bucket,
and obtain the content and
metadata of the objects in the
bucket.
This permission cannot be set for
objects.

AccessControlList.REST_C
ANNED_PUBLIC_READ_D
ELIVERED

public-read-
write-delivered

If this permission is set for a
bucket, everyone can obtain the
object list in the bucket, multipart
uploads in the bucket, metadata
of the bucket; upload objects;
delete objects; initialize multipart
uploads; upload parts; combine
parts; copy parts; abort multipart
uploads; obtain content and
metadata of objects in the
bucket.
This permission cannot be set for
objects.

AccessControlList.REST_C
ANNED_PUBLIC_READ_
WRITE_DELIVERED

Specifying a Pre-defined Access Control Policy During Bucket Creation
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObsBucket obsBucket = new ObsBucket();
obsBucket.setBucketName("bucketname");
// Set the bucket ACL to public-read-write.
obsBucket.setAcl(AccessControlList.REST_CANNED_PUBLIC_READ_WRITE);

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 29

// Create a bucket.
obsClient.createBucket(obsBucket);

Setting a Pre-defined Access Control Policy for a Bucket
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the bucket ACL to private.
obsClient.setBucketAcl("bucketname", AccessControlList.REST_CANNED_PRIVATE);

Directly Setting a Bucket ACL
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = new AccessControlList();
Owner owner = new Owner();
owner.setId("ownerid");
acl.setOwner(owner);
// Grant the FULL_CONTROL permission to a specified user.
acl.grantPermission(new CanonicalGrantee("userid"), Permission.PERMISSION_FULL_CONTROL);
// Grant the READ permission to all users.
acl.grantPermission(GroupGrantee.ALL_USERS, Permission.PERMISSION_READ);
// Directly set the bucket ACL.
obsClient.setBucketAcl("bucketname", acl);

The owner or grantee ID needed in the ACL indicates the account ID, which can be viewed
on the My Credential page of OBS Console.

Obtaining a Bucket ACL
You can call ObsClient.getBucketAcl to obtain the bucket ACL. Sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = obsClient.getBucketAcl("bucketname");
System.out.println(acl);

6.7 Managing Bucket Policies
Besides bucket ACLs, bucket owners can use bucket policies to centrally control
access to buckets and objects in buckets.

For more information, see Bucket Policy Overview.

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 30

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853745.html

Setting a Bucket Policy

You can call ObsClient.setBucketPolicy to set a bucket policy. Sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
obsClient.setBucketPolicy("bucketname", "your policy");

For details about the format (JSON character string) of bucket policies, see the Object
Storage Service API Reference.

Obtaining a Bucket Policy

You can call ObsClient.getBucketPolicy to obtain a bucket policy. Sample code is
as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

String policy = obsClient.getBucketPolicy("bucketname");
System.out.println("\t" + policy);

Deleting a Bucket Policy

You can call ObsClient.deleteBucketPolicy to delete a bucket policy. Sample code
is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.deleteBucketPolicy("bucketname");

6.8 Obtaining a Bucket Location
You can call ObsClient.getBucketLocation to obtain the location of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

String location = obsClient.getBucketLocation("bucketname");
System.out.println("\t:" + location);

When creating a bucket, you can specify its location. For details, see Creating a Bucket.

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 31

6.9 Obtaining Storage Information About a Bucket
The storage information about a bucket includes the used capacity of and the
number of objects in the bucket. You can call ObsClient.getBucketStorageInfo to
obtain the bucket storage information. Sample code is as follows:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketStorageInfo storageInfo = obsClient.getBucketStorageInfo("bucketname");
System.out.println("\t" + storageInfo.getObjectNumber());
System.out.println("\t" + storageInfo.getSize());

6.10 Setting or Obtaining a Bucket Quota

Setting a Bucket Quota
You can call ObsClient.setBucketQuota to set the bucket quota. Sample code is
as follows:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the bucket quota to 100 MB.
BucketQuota quota = new BucketQuota(1024 * 1024 * 100l);
obsClient.setBucketQuota("bucketname", quota);

A bucket quota must be a non-negative integer expressed in bytes. The maximum value is
263 - 1.

Obtaining a Bucket Quota
You can call ObsClient.getBucketQuota to obtain the bucket quota. Sample code
is as follows:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketQuota quota = obsClient.getBucketQuota("bucketname");
System.out.println("\t" + quota.getBucketQuota());

6.11 Setting or Obtaining the Storage Class of a Bucket
OBS allows you to set storage classes for buckets. The storage class of an object
defaults to be that of its residing bucket. Different storage classes meet different
needs for storage performance and costs. There are three types of storage class for
buckets, as described in the following table:

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 32

Storage
Class

Description Value in OBS Java
SDK

OBS Standard Features low access latency and high
throughput and is applicable to
storing frequently-accessed (multiple
times per month) hotspot or small
objects (< 1 MB) requiring quick
response.

StorageClassEnum.STA
NDARD

OBS Warm Is applicable to storing semi-
frequently accessed (less than 12
times a year) data requiring quick
response.

StorageClassEnum.WA
RM

OBS Cold Is applicable to archiving rarely-
accessed (once a year) data.

StorageClassEnum.COL
D

For more information, see Bucket Storage Classes.

The bucket storage class is independent from the storage classes of objects in the bucket. If
the object storage class is not set during object upload, the object storage class is the same
as that of the bucket. However, if the storage class of the bucket is changed, the storage
class of the objects in the bucket does not change accordingly. If the storage class of an
object in a bucket is changed, the storage class of the bucket does not change either.

Setting the Storage Class for a Bucket

You can call ObsClient.setBucketStoragePolicy to set the storage class for a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the storage class to OBS .
BucketStoragePolicyConfiguration storgePolicy = new BucketStoragePolicyConfiguration();
storgePolicy.setBucketStorageClass(StorageClassEnum.WARM);
obsClient.setBucketStoragePolicy("bucketname", storgePolicy);

Obtaining the Storage Class of a Bucket

You can call ObsClient.getBucketStoragePolicy to obtain the storage class of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 33

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0050937852.html

BucketStoragePolicyConfiguration storagePolicy = obsClient.getBucketStoragePolicy("bucketname");
System.out.println("\t" + storagePolicy.getBucketStorageClass());

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

2020-02-26 34

7 Object Upload

7.1 Object Upload Overview
In OBS, objects are basic data units that users can perform operations on. OBS
Java SDK provides abundant APIs for object upload in the following methods:

● 7.2 Performing a Streaming Upload
● 7.3 Performing a File-Based Upload
● 7.7 Performing a Multipart Upload
● 7.9 Performing an Appendable Upload
● 7.10 Performing a Resumable Upload
● 7.11 Performing a Browser-Based Upload

The SDK supports the upload of objects whose size ranges from 0 KB to 5 GB. For
streaming upload, appendable upload, and file-based upload, data to be uploaded
cannot be larger than 5 GB. If the file is larger than 5 GB, multipart upload (where
each part is smaller than 5 GB) is suitable. Browser-based upload allows files to be
uploaded through a browser.

If the uploaded object can be read by anonymous users. After the upload
succeeds, anonymous users can access the object data through the object URL.
The object URL is in the format of https://bucket name.domain name/directory
level/object name. If the object resides in the root directory of the bucket, its URL
does not contain directory levels.

7.2 Performing a Streaming Upload
Streaming upload uses java.io.InputStream as the data source of an object. You
can call ObsClient.putObject to upload the data streams to OBS. Sample code is
as follows:

Uploading a Character String (Byte Array)
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 35

String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

String content = "Hello OBS";
obsClient.putObject("bucketname", "objectname", new ByteArrayInputStream(content.getBytes()));

Uploading a Network Stream
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

InputStream inputStream = new URL("http://www.a.com").openStream();
obsClient.putObject("bucketname", "objectname", inputStream);

Uploading a File Stream
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

FileInputStream fis = new FileInputStream(new File("localfile")); // localfile indicates the path of the local
file to be uploaded. You need to specify the file name.
obsClient.putObject("bucketname", "objectname", fis);

NO TICE

● To upload a local file, you are advised to use file-based upload.
● To upload a large file, you are advised to use multipart upload.
● The content to be uploaded cannot exceed 5 GB.

7.3 Performing a File-Based Upload
File-based upload uses local files as the data source of objects. Sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.putObject("bucketname", "objectname", new File("localfile")); // localfile indicates the path of
the local file to be uploaded. You need to specify the file name.

The content to be uploaded cannot exceed 5 GB.

7.4 Obtaining Upload Progresses
You can call PutObjectRequest.setProgressListener to configure the data
transmission API to obtain upload progresses. Sample code is as follows:

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 36

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

PutObjectRequest request = new PutObjectRequest("bucketname", "objectname");
request.setFile(new File("localfile"));
request.setProgressListener(new ProgressListener() {

 @Override
 public void progressChanged(ProgressStatus status) {
 // Obtain the average upload rate.
 System.out.println("AverageSpeed:" + status.getAverageSpeed());
 // Obtain the upload progress in percentage.
 System.out.println("TransferPercentage:" + status.getTransferPercentage());
 }
});
// Refresh the upload progress each time 1 MB data is uploaded.
request.setProgressInterval(1024 * 1024L);
obsClient.putObject(request);

● You can query the upload progress when uploading an object in streaming, file-based,
multipart, appendable, or resumable mode.

● If the value of ProgressStatus.getTransferPercentage() is -1, the content is uploaded
in streaming mode. In this case, you must set the object length (Content-Length) in the
object property.

7.5 Creating a Folder
There is no folder concept in OBS. All elements in buckets are objects. To create a
folder in OBS is essentially to create an object whose size is 0 and whose name
ends with a slash (/). Such objects have no difference from other objects and can
be downloaded and deleted, except that they are displayed as folders in OBS
Console.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

final String keySuffixWithSlash = "parent_directory/";
obsClient.putObject("bucketname", keySuffixWithSlash, new ByteArrayInputStream(new byte[0]));

// In the folder, create an object.
obsClient.putObject("bucketname", keySuffixWithSlash + "objectname", new ByteArrayInputStream("Hello
OBS".getBytes()));

● To create a folder in OBS is to create an object whose size is 0 and whose name ends
with a slash (/), in essential.

● To create a multi-level folder, you only need to create the folder with the last level. For
example, if you want to create a folder named src1/src2/src3/, create it directly, no
matter whether the src1/ and src1/src2/ folders exist.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 37

7.6 Setting Object Properties
You can set properties for an object when uploading it. Object properties include
the object length, MIME type, MD5 value (for verification), storage class, and
customized metadata. You can set properties for an object that is being uploaded
in streaming, file-based, or multipart mode or when copying the object.

The following table describes object properties.

Property Name Description Default Value

Content-Length Indicates the object length. If the
object length exceeds the flow or
file length, the object will be
truncated.

Actual length of the
stream or file

Content-Type Indicates the MIME type of the
object, which defines the type
and network code of the object
as well as in which mode and
coding will the browser read the
object.

application/octet-stream

Content-MD5 Indicates the base64-encoded
digest of the object data. It is
provided to the OBS server to
verify data integrity.

None

Storage Class Indicates the storage class of the
object. Different storage classes
meet different needs for storage
performance and costs. The value
defaults to be the same as the
object's residing bucket and can
be changed.

None

Customized
metadata

Indicates the user-defined
description of properties of the
object uploaded to the bucket. It
is used to facilitate the
customized management on the
object.

None

Setting the Length for an Object
You can call ObjectMetadata.setContentLength to set the length for an object.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 38

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectMetadata metadata = new ObjectMetadata();
metadata.setContentLength(1024 * 1024L);// 1 MB
obsClient.putObject("bucketname", "objectname", new File("localfile"), metadata);

Setting the MIME Type for an Object
You can call ObjectMetadata.setContentType to set the MIME type for an object.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload an image.
ObjectMetadata metadata = new ObjectMetadata();
metadata.setContentType("image/jpeg");
obsClient.putObject("bucketname", "objectname.jpg", new File("localimage.jpg"), metadata);

If this property is not specified, the SDK will automatically identify the MIME type according
to the name suffix of the uploaded object. For example, if the name suffix of an object
is .xml (.html), the object will be identified as an application/xml (text/html) file.

Setting the MD5 Value for an Object
You can call ObjectMetadata.setContentMd5 to set the MD5 value for an object.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Upload an image.
ObjectMetadata metadata = new ObjectMetadata();
metadata.setContentMd5("your md5 which should be encoded by base64");
obsClient.putObject("bucketname", "objectname", new File("localimage.jpg"), metadata);

● The MD5 value of an object must be a base64-encoded digest.
● The OBS server will compare this MD5 value with the MD5 value obtained by object

data calculation. If the two values are not the same, the upload fails with HTTP status
code 400 returned.

● If the MD5 value is not specified, the OBS server will skip MD5 value verification.
● You can call ObsClient.base64Md5 to calculate the Content-MD5 header directly.

Setting the Storage Class for an Object
You can call ObjectMetadata.setObjectStorageClass to set the storage class for
an object. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 39

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectMetadata metadata = new ObjectMetadata();
// Set the storage class of the object to OBS Warm.
metadata.setObjectStorageClass(StorageClassEnum.WARM);
obsClient.putObject("bucketname", "objectname", new File("localfile"), metadata);

● If you have not set the storage class for an object, the storage class of the object will be
the same as that of its residing bucket.

● OBS provides objects with three storage classes which are consistent with the storage
classes provided for buckets.

● Before downloading a Cold object, you must restore it.

Customizing Metadata for an Object

You can call ObjectMetadata.addUserMetadata to customize metadata for an
object. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectMetadata metadata = new ObjectMetadata();
metadata.addUserMetadata("property1", "property-value1");
metadata.getMetadata().put("property2", "property-value2");
obsClient.putObject("bucketname", "objectname", new File("localfile"), metadata);

● In the preceding code, two pieces of metadata named property1 and property2 are
customized and their respective values are set to property-value1 and property-value2.

● An object can have multiple pieces of metadata. The total metadata size cannot exceed
8 KB.

● The customized object metadata can be obtained by using
ObsClient.getObjectMetadata. For details, see Obtaining Object Metadata.

● When you call ObsClient.getObject to download an object, its customized metadata
will also be downloaded.

7.7 Performing a Multipart Upload
To upload a large file, multipart upload is recommended. Multipart upload is
applicable to many scenarios, including:

● Files to be uploaded are larger than 100 MB.
● The network condition is poor. Connection to the OBS server is constantly

down.
● Sizes of files to be uploaded are uncertain.

Multipart upload has the following advantages:

● Improving throughput: You can upload parts in parallel to improve
throughput.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 40

● Quick recovery from any network failures: Small-size parts can minimize the
impact of failed uploading caused by network errors.

● Convenient suspension and resuming of object uploading: You can upload
parts at any time. A multipart upload does not have a validity period. You
must explicitly complete or cancel the multipart upload.

● Starting uploading before knowing the size of an object: You can upload an
object while creating it.

Multipart upload consists of three phases:

Step 1 Initialize a multipart upload (ObsClient.initiateMultipartUpload).

Step 2 Upload parts one by one or concurrently (ObsClient.uploadPart).

Step 3 Combine parts (ObsClient.completeMultipartUpload) or abort the multipart
upload (ObsClient.abortMultipartUpload).

----End

Initializing a Multipart Upload
Before upload, you need to notify OBS of initializing a multipart upload. This
operation will return an upload ID (globally unique identifier) created by the OBS
server to identify the multipart upload. You can use this upload ID to initiate
related operations, such as aborting a multipart upload, listing multipart uploads,
and listing uploaded parts.

You can call ObsClient.initiateMultipartUpload to initialize a multipart upload.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

InitiateMultipartUploadRequest request = new InitiateMultipartUploadRequest("bucketname",
"objectname");
ObjectMetadata metadata = new ObjectMetadata();
metadata.addUserMetadata("property", "property-value");
metadata.setContentType("text/plain");
request.setMetadata(metadata);
InitiateMultipartUploadResult result = obsClient.initiateMultipartUpload(request);

String uploadId = result.getUploadId();
System.out.println("\t" + uploadId);

● Call InitiateMultipartUploadRequest to specify the name and owning bucket of the
uploaded object.

● In InitiateMultipartUploadRequest, you can specify the MIME type, storage class, and
customized metadata for the object.

● The upload ID of the multipart upload returned by
InitiateMultipartUploadResult.getUploadId will be used in follow-up operations.

Uploading a Part
After initializing a multipart upload, you can specify the object name and upload
ID to upload a part. Each upload part has a part number (ranging from 1 to

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 41

10000). For parts with the same upload ID, their part numbers are unique and
identify their comparative locations in the object. If you use the same part number
to upload two parts, the later one being uploaded will overwrite the former.
Except for the part last uploaded whose size ranges from 0 to 5 GB, sizes of the
other parts range from 100 KB to 5 GB. Parts are uploaded in random order and
can be uploaded through different processes or machines. OBS will combine them
into the object based on their part numbers.

You can call ObsClient.uploadPart to upload a part.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
String uploadId = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

List<PartEtag> partEtags = new ArrayList<PartEtag>();
// Upload the first part.
UploadPartRequest request = new UploadPartRequest("bucketname", "objectname");
// Set an upload ID.
request.setUploadId(uploadId);
// Set a part number, which ranges from 1 to 10000.
request.setPartNumber(1);
// Set the large file to be uploaded.
request.setFile(new File("localfile"));

// Set the part size.
request.setPartSize(5 * 1024 * 1024L);
UploadPartResult result = obsClient.uploadPart(request);
partEtags.add(new PartEtag(result.getEtag(), result.getPartNumber()));

// Upload the second part.
request = new UploadPartRequest("bucketname", "objectname");
// Set an upload ID.
request.setUploadId(uploadId);
// Set the part number.
request.setPartNumber(2);
// Set the large file to be uploaded.
request.setFile(new File("localfile"));
// Set the offset of the second part.
request.setOffset(5 * 1024 * 1024L);
// Set the part size.
request.setPartSize(5 * 1024 * 1024L);
result = obsClient.uploadPart(request);
partEtags.add(new PartEtag(result.getEtag(), result.getPartNumber()));

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 42

● Except the part last uploaded, other parts must be larger than 100 KB. Part sizes will not
be verified during upload because which one is last uploaded is not identified until parts
are combined.

● OBS will return ETags (MD5 values) of the received parts to users.

● To ensure data integrity, set UploadPartRequest.setAttachMd5 to true to make the
SDK automatically calculate the MD5 value (valid only when the data source is a local
file) of each part and add the MD5 value to the Content-MD5 request header. The OBS
server will compare the MD5 value contained by each part and that calculated by the
SDK to verify the data integrity.

● You can call UploadPartRequest.setContentMd5 to set the MD5 value of the uploaded
data directly. If this value is set, the UploadPartRequest.setAttachMd5 parameter
becomes ineffective.

● Part numbers range from 1 to 10000. If the part number you set is out of this range,
OBS will return error 400 Bad Request.

● The minimum part size supported by an OBS 3.0 bucket is 100 KB, and the minimum
part size supported by an OBS 2.0 bucket is 5 MB.

Combining Parts

After all parts are uploaded, call the API for combining parts to generate the
object. Before this operation, valid part numbers and ETags of all parts must be
sent to OBS. After receiving this information, OBS verifies the validity of each part
one by one. After all parts pass the verification, OBS combines these parts to form
the final object.

You can call ObsClient.completeMultipartUpload to combine parts.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
String uploadId = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

List<PartEtag> partEtags = new ArrayList<PartEtag>();
// First part
PartEtag part1 = new PartEtag();
part1.setPartNumber(1);
part1.seteTag("etag1");
partEtags.add(part1);

// Second part
PartEtag part2 = new PartEtag();
part2.setPartNumber(2);
part2.setEtag("etag2");
partEtags.add(part2);

CompleteMultipartUploadRequest request = new CompleteMultipartUploadRequest("bucketname",
"objectname", uploadId, partEtags);

obsClient.completeMultipartUpload(request);

● In the preceding code, partEtags indicates the list of part numbers and ETags of
uploaded parts.

● Part numbers can be inconsecutive.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 43

Concurrently Uploading Parts
Multipart upload is mainly used for large file upload or when the network
condition is poor. The following sample code shows how to concurrently upload
parts in a multipart upload:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
final String bucketName = "bucketname";
final String objectKey = "objectname";
// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Initialize the thread pool.
ExecutorService executorService = Executors.newFixedThreadPool(20);
final File largeFile = new File("localfile");

// Initialize the multipart upload.
InitiateMultipartUploadRequest request = new InitiateMultipartUploadRequest(bucketName, objectKey);
InitiateMultipartUploadResult result = obsClient.initiateMultipartUpload(request);

final String uploadId = result.getUploadId();
System.out.println("\t"+ uploadId + "\n");

// Set the part size to 100 MB.
long partSize = 100 * 1024 * 1024L;
long fileSize = largeFile.length();

// Calculate the number of parts need to be uploaded.
long partCount = fileSize % partSize == 0 ? fileSize / partSize : fileSize / partSize + 1;

final List<PartEtag> partEtags = Collections.synchronizedList(new ArrayList<PartEtag>());

// Start uploading parts concurrently.
for (int i = 0; i < partCount; i++)
{
 // Start position of parts in the file
 final long offset = i * partSize;
 // Part size
 final long currPartSize = (i + 1 == partCount) ? fileSize - offset : partSize;
 // Part number
 final int partNumber = i + 1;
 executorService.execute(new Runnable()
 {
 @Override
 public void run()
 {
 UploadPartRequest uploadPartRequest = new UploadPartRequest();
 uploadPartRequest.setBucketName(bucketName);
 uploadPartRequest.setObjectKey(objectKey);
 uploadPartRequest.setUploadId(uploadId);
 uploadPartRequest.setFile(largeFile);
 uploadPartRequest.setPartSize(currPartSize);
 uploadPartRequest.setOffset(offset);
 uploadPartRequest.setPartNumber(partNumber);

 UploadPartResult uploadPartResult;
 try
 {
 uploadPartResult = obsClient.uploadPart(uploadPartRequest);
 System.out.println("Part#" + partNumber + " done\n");
 partEtags.add(new PartEtag(uploadPartResult.getEtag(), uploadPartResult.getPartNumber()));
 }
 catch (ObsException e)
 {
 e.printStackTrace();
 }
 }

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 44

 });
}

// Wait until the upload is complete.
executorService.shutdown();
while (!executorService.isTerminated())
{
 try
 {
 executorService.awaitTermination(5, TimeUnit.SECONDS);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
}
// Combine parts.
CompleteMultipartUploadRequest completeMultipartUploadRequest = new
CompleteMultipartUploadRequest(bucketName, objectKey, uploadId, partEtags);
obsClient.completeMultipartUpload(completeMultipartUploadRequest);

When uploading a large file, use UploadPartRequest.setOffset and
UploadPartRequest.setPartSize to determine the start and end positions of each part.

Aborting a Multipart Upload
After a multipart upload is aborted, you cannot use its upload ID to perform any
operation and the uploaded parts will be deleted by OBS.

When an object is being uploaded in multi-part mode or an object fails to be
uploaded, parts are generated in the bucket. These parts occupy your storage
space. You can cancel the multi-part uploading task to delete unnecessary parts,
thereby saving the storage space.

You can call ObsClient.abortMultipartUpload to abort a multipart upload.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
String uploadId = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AbortMultipartUploadRequest request = new AbortMultipartUploadRequest("bucketname", "objectname",
uploadId);

obsClient.abortMultipartUpload(request);

Listing Uploaded Parts
You can call ObsClient.listParts to list successfully uploaded parts of a multipart
upload.

The following table describes the parameters involved in this API.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 45

Parameter Description Method in OBS Java
SDK

bucketName Bucket name ListPartsRequest.setBuck
etName

key Object name ListPartsRequest.setKey

uploadId Upload ID, which globally
identifies a multipart upload.
The value is in the returned
result of
ObsClient.initiateMultipar-
tUpload.

ListPartsRequest.setUplo
adId

maxParts Maximum number of parts
that can be listed per page.

ListPartsRequest.setMaxP
arts

partNumberMarker Part number after which
listing uploaded parts begins.
Only parts whose part
numbers are larger than this
value will be listed.

ListPartsRequest.setPart
NumberMarker

● Listing parts in simple mode
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
String uploadId = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

//List the uploaded parts. uploadId is obtained frominitiateMultipartUpload.
ListPartsRequest request = new ListPartsRequest("bucketname", "objectname");
request.setUploadId(uploadId);
ListPartsResult result = obsClient.listParts(request);

for(Multipart part : result.getMultipartList()){
 // Part number, specified when uploading
 System.out.println("\t"+part.getPartNumber());
 // Part size
 System.out.println("\t"+part.getSize());
 // Part ETag
 System.out.println("\t"+part.getEtag());
 // Time when the part was last uploaded
 System.out.println("\t"+part.getLastModified());
}

● Information about a maximum of 1,000 parts can be listed each time. If a task of the
specific upload ID contains more than 1,000 parts and ListPartsResult.isTruncated is
true in the returned result, not all parts are returned. In such cases, you can use
ListPartsResult.getNextPartNumberMarker to obtain the start position for next listing.

● If you want to obtain all parts involved in a specific upload ID, you can use the paging
mode for listing.

● Listing all parts

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 46

If the number of parts of a multipart upload is larger than 1,000, you can use the
following sample code to list all parts.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
String uploadId = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// List the uploaded parts. uploadId is obtained from initiateMultipartUpload.
ListPartsRequest request = new ListPartsRequest("bucketname", "objectname");
request.setUploadId(uploadId);
ListPartsResult result;

do{
 result = obsClient.listParts(request);
 for(Multipart part : result.getMultipartList()){
 // Part number, specified when uploading
 System.out.println("\t"+part.getPartNumber());
 // Part size
 System.out.println("\t"+part.getSize());
 // Part ETag
 System.out.println("\t"+part.getEtag());
 // Time when the part was last uploaded
 System.out.println("\t"+part.getLastModified());
 }
 request.setPartNumberMarker(Integer.parseInt(result.getNextPartNumberMarker()));
}while(result.isTruncated());

Listing Multipart Uploads
You can call ObsClient.listMultipartUploads to list multipart uploads. The
following table describes parameters involved in ObsClient.listMultipartUploads.

Parameter Description Method in OBS Java
SDK

bucketName Bucket name ListMultipartUploadsRe-
quest.setBucketName

prefix Prefix that the object names in the
multipart uploads to be listed must
contain

ListMultipartUploadsRe-
quest.setPrefix

delimiter Character used to group object
names involved in multipart
uploads. If the object name
contains the delimiter parameter,
the character string from the first
character to the first delimiter in
the object name is grouped under
a single result element,
commonPrefix. (If a prefix is
specified in the request, the prefix
must be removed from the object
name.)

ListMultipartUploadsRe-
quest.setDelimiter

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 47

Parameter Description Method in OBS Java
SDK

maxUploads Maximum number of returned
multipart uploads. The value
ranges from 1 to 1000. If the value
is not in this range, 1,000 multipart
uploads are returned by default.

ListMultipartUploadsRe-
quest.setMaxUploads

keyMarker Object name to start with when
listing multipart uploads

ListMultipartUploadsRe-
quest.setKeyMarker

uploadIdMarke
r

Upload ID after which the
multipart upload listing begins. It
is effective only when used with
keyMarker so that multipart
uploads after uploadIdMarker of
keyMarker will be listed.

ListMultipartUploadsRe-
quest.setUploadIdMarker

● Listing multipart uploads in simple mode
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
String uploadId = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListMultipartUploadsRequest request = new ListMultipartUploadsRequest("bucketname");

MultipartUploadListing result = obsClient.listMultipartUploads(request);
for(MultipartUpload upload : result.getMultipartTaskList()){
 System.out.println("\t" + upload.getUploadId());
 System.out.println("\t" + upload.getObjectKey());
 System.out.println("\t" + upload.getInitiatedDate());
}

● Information about a maximum of 1,000 multipart uploads can be listed each time. If a
bucket contains more than 1,000 multipart uploads and
MultipartUploadListing.isTruncated is true, not all uploads are listed. In such cases,
you can use MultipartUploadListing.getNextKeyMarker and
MultipartUploadListing.getNextUploadIdMarker to obtain the start position for next
listing.

● If you want to obtain all multipart uploads in a bucket, you can list them in paging
mode.

● Listing all multipart uploads in paging mode
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
String uploadId = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListMultipartUploadsRequest request = new ListMultipartUploadsRequest("bucketname");
MultipartUploadListing result;

do{
 result = obsClient.listMultipartUploads(request);

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 48

 for(MultipartUpload upload : result.getMultipartTaskList()){
 System.out.println("\t" + upload.getUploadId());
 System.out.println("\t" + upload.getObjectKey());
 System.out.println("\t" + upload.getInitiatedDate());
 }
 request.setKeyMarker(result.getNextKeyMarker());
 request.setUploadIdMarker(result.getNextUploadIdMarker());
}while(result.isTruncated());

7.8 Configuring Lifecycle Management
When uploading an object or initializing a multipart upload, you can directly set
the expiration time for the object. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

PutObjectRequest request = new PutObjectRequest ("bucketname", "objectkey");
request.setFile(new File("localfile")); // localfile indicates the path of the local file to be uploaded. You
need to specify the file name.
// When uploading an object, set the object to expire after 30 days.
request.setExpires(30);
obsClient.putObject(request);

InitiateMultipartUploadRequest request2 = new InitiateMultipartUploadRequest("bucketname",
"objectname");
// When initializing a multipart upload, set the object to expire 60 days after combination.
request2.setExpires(60);
obsClient.initiateMultipartUpload(request);

● The previous mode specifies the time duration in days after which an object will expire.
The OBS server automatically clears expired objects.

● The object expiration time set in the preceding method takes precedence over the
bucket lifecycle rule.

7.9 Performing an Appendable Upload
Appendable upload allows you to upload an object in appendable mode and then
append data to the object. You can call ObsClient.appendObject to perform an
appendable upload. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload an object in appendable mode.
AppendObjectRequest request = new AppendObjectRequest();
request.setBucketName("bucketname");
request.setObjectKey("objectname");
request.setPosition(0);
request.setInput(new ByteArrayInputStream("Hello OBS".getBytes()));
AppendObjectResult result = obsClient.appendObject(request);

// Append data to the object.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 49

request.setPosition(result.getNextPosition());
request.setInput(new ByteArrayInputStream("Hello OBS Again".getBytes()));
result = obsClient.appendObject(request);

System.out.println("NextPosition:" + result.getNextPosition());
System.out.println("Etag:" + result.getEtag());
// Use the API for obtaining object properties to get the start position for next appending.
ObjectMetadata metadata = obsClient.getObjectMetadata("bucketname", "objectname");
System.out.println("NextPosition from metadata:" + metadata.getNextPosition());

● Objects uploaded using ObsClient.putObject, referred to as normal objects, can
overwrite objects uploaded using ObsClient.appendObject, referred to as appendable
objects. Data cannot be appended to an appendable object anymore once the object
has been overwritten by a normal object.

● When you upload an object for the first time in appendable mode, an exception will be
thrown (status code 409) if a normal object with the same name exists.

● The ETag returned for an appendable upload is the ETag for the uploaded content,
rather than that of the whole object.

● Data appended each time can be up to 5 GB, and 10,000 times of appendable uploads
can be performed on a single object.

● After an appendable upload is successful, you can call
AppendObjectResult.getNextPosition or use the ObsClient.getObjectMetadata API
to get the start position for next appending.

7.10 Performing a Resumable Upload
Uploading large files often fails due to poor network conditions or program
breakdowns. It is a waste of resources to restart the upload process upon an
upload failure, and the restarted upload process may still suffer from the unstable
network. To resolve such issues, you can use the API for resumable upload, whose
working principle is to divide the to-be-uploaded file into multiple parts and
upload them separately. The upload result of each part is recorded in a checkpoint
file in real time. Only when all parts are successfully uploaded, the result
indicating a successful upload will be returned. Otherwise, an exception is thrown
to remind you of calling the API again for re-uploading. Based on the upload
status of each part recorded in the checkpoint file, the re-uploading will upload
the parts failed to be uploaded previously, instead of uploading all parts. By virtue
of this, resources are saved and efficiency is improved.

You can call ObsClient.uploadFile to perform a resumable upload. The following
table describes the parameters involved in this API.

Parameter Description Method in OBS Java
SDK

bucketNam
e

(Mandatory) Bucket name UploadFileRequest.setBu
cketName

objectKey (Mandatory) Object name UploadFileRequest.setOb
jectKey

uploadFile (Mandatory) Local file to be uploaded UploadFileRequest.setUp
loadFile

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 50

Parameter Description Method in OBS Java
SDK

partSize Part size, in bytes. The value ranges
from 100 KB to 5 GB and defaults to 9
MB.

UploadFileRequest.setPa
rtSize

taskNum Maximum number of parts that can be
concurrently uploaded. The default
value is 1.

UploadFileRequest.setTa
skNum

enableChec
kpoint

Whether to enable the resumable
upload mode. The default value is
false, which indicates that this mode is
disabled.

UploadFileRequest.setEn
ableCheckpoint

checkpoint
File

File used to record the upload
progress. This parameter is effective
only in the resumable upload mode. If
the value of this parameter is null, the
file will be in the same directory as the
local file to be uploaded.

UploadFileRequest.setCh
eckpointFile

objectMeta
data

Object properties UploadFileRequest.setOb
jectMetadata

enableChec
kSum

Whether to verify the content of the
to-be-uploaded file. This parameter is
effective only in the resumable upload
mode. The default value is false,
which indicates that the content will
not be verified.

UploadFileRequest.setEn
ableCheckSum

progressList
ener

Configure the data transmission
listener to obtain upload progresses.

UploadFileRequest.setPr
ogressListener

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

UploadFileRequest request = new UploadFileRequest("bucketname", "obsjectKey");
// Set the large file to be uploaded. localfile is the path of the local file to be uploaded. You need to specify
the file name.
request.setUploadFile("localfile");
// Set the maximum number of parts that can be concurrently uploaded.
request.setTaskNum(5);
// Set the part size to 10 MB.
request.setPartSize(10 * 1024 * 1024);
// Enable resumable upload.
request.setEnableCheckpoint(true);
try{
 // Perform a resumable upload.
 CompleteMultipartUploadResult result = obsClient.uploadFile(request);

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 51

}catch (ObsException e) {
 // When an exception occurs, you can call the API for resumable upload again to perform re-uploading.
}

● The API for resumable upload, which is implemented based on multipart upload, is an
encapsulated and enhanced version of multipart upload.

● This API saves resources and improves efficiency upon the re-upload, and speeds up the
upload process by concurrently uploading parts. Because this API is invisible to users,
users are unaware of internal service details, such as the creation and deletion of
checkpoint files, division of objects, and concurrent upload of parts.

● The default value of the enableCheckpoint parameter is false, which indicates that the
resumable upload mode is disabled. In such cases, this API degrades to the simple
encapsulation of multipart upload, and no checkpoint file will be generated.

● checkpointFile and enableCheckSum are effective only when enableCheckpoint is
true.

7.11 Performing a Browser-Based Upload
Performing a browser-based upload is to upload objects to a specified bucket in
HTML form. The maximum size of an object is 5 GB.

You can call ObsClient.createPostSignature to generate request parameters for a
browser-based upload. You can use code to simulate a browser-based upload. For
details, see PostObjectSample. You can also perform a browser-based upload as
follows: The procedure is as follows:

Step 1 Call ObsClient.createPostSignature to generate request parameters for
authentication.

Step 2 Prepare an HTML form page.

Step 3 Enter the request parameters in the HTML page.

Step 4 Select a local file to and upload it in browser-based mode.

----End

There are two request parameters generated:
● policy, which corresponds to the policy field in the form
● signature, which corresponds to the signature field in the form

The following sample code shows how to generate the request parameters in a
browser-based upload.

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

PostSignatureRequest request = new PostSignatureRequest();
// Fill in parameters in the form.
Map<String, Object> formParams = new HashMap<String, Object>();
// Set the object ACL to public-read.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 52

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/PostObjectSample.zip

formParams.put("x-obs-acl", "public-read");
// Set the MIME type for the object.
formParams.put("content-type", "text/plain");

request.setFormParams(formParams);
// Set the validity period for the browser-based upload request, in seconds.
request.setExpires(3600);
PostSignatureResponse response = obsClient.createPostSignature(request);

// Obtain the request parameters.
System.out.println("\t" + response.getPolicy());
System.out.println("\t" + response.getSignature());

Code of an HTML form example is as follows:

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
</head>
<body>

<form action="http://bucketname.your-endpoint/" method="post" enctype="multipart/form-data">
Object key
<!-- Object name -->
<input type="text" name="key" value="objectname" />
<p>
ACL
<!-- Object ACL -->
<input type="text" name="x-obs-acl" value="public-read" />
<p>
Content-Type
<!-- Object MIME type -->
<input type="text" name="content-type" value="text/plain" />
<p>
<!-- Base64 code of the policy -->
<input type="hidden" name="policy" value="*** Provide your policy ***" />
<!-- AK -->
<input type="hidden" name="AccessKeyId" value="*** Provide your access key ***"/>
<!-- Signature information -->
<input type="hidden" name="signature" value="*** Provide your signature ***"/>

<input name="file" type="file" />
<input name="submit" value="Upload" type="submit" />
</form>
</body>
</html>

● Values of policy and signature in the HTML form are obtained from the returned result
of ObsClient.createPostSignature.

● You can directly download the HTML form example: PostDemo.

Object Storage Service
Java SDK Developer Guide 7 Object Upload

2020-02-26 53

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/PostDemo.zip

8 Object Download

8.1 Object Download Overview
OBS Java SDK provides abundant APIs for object download in the following
methods:

● 8.2 Performing a Streaming Download
● 8.3 Performing a Partial Download
● 8.9 Performing a Resumable Download

You can call ObsClient.getObject to download an object.

8.2 Performing a Streaming Download
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObsObject obsObject = obsClient.getObject("bucketname", "objectname");

// Read the object contents.
System.out.println("Object content:");
InputStream input = obsObject.getObjectContent();
byte[] b = new byte[1024];
ByteArrayOutputStream bos = new ByteArrayOutputStream();
int len;
while ((len=input.read(b)) != -1){
 bos.write(b, 0, len);
}

System.out.println(new String(bos.toByteArray()));
bos.close();
input.close();

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 54

● After ObsClient.getObject is called, an instance of ObsObject will be returned. This
instance contains the residing bucket, name, properties, and input streams of the object.

● You can perform operations on the input streams of an object to read and write the
object contents to a local file or to the memory.

NO TICE

Object input streams obtained by ObsObject.getObjectContent must be closed
explicitly. Otherwise, resource leakage occurs.

8.3 Performing a Partial Download
When only partial data of an object is required, you can download data falling
within a specific range. If the specified range is 0 to 1000, data at the 0th to the
1000th bytes, 1001 bytes in total, will be returned. If the specified range is invalid,
data of the whole object will be returned. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

GetObjectRequest request = new GetObjectRequest("bucketname", "objectname");
// Specify the start and end positions.
request.setRangeStart(0l);
request.setRangeEnd(1000l);
ObsObject obsObject = obsClient.getObject(request);

// Obtain data.
byte[] buf = new byte[1024];
InputStream in = obsObject.getObjectContent();
for (int n = 0; n != -1;) {
 n = in.read(buf, 0, buf.length);
}

in.close();

● If the specified range is invalid (because the start or end position is set to a negative
integer or the range is larger than the object length), data of the whole object will be
returned.

● This download method also can be used to concurrently download parts of a large
object. For details about the sample code, see ConcurrentDownloadObjectSample.

8.4 Obtaining Download Progresses
You can call GetObjectRequest.setProgressInterval to configure the data
transmission interface to obtain download progresses. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 55

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ConcurrentDownloadObjectSample.zip

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

GetObjectRequest request = new GetObjectRequest("bucketname", "objectname");
request.setProgressListener(new ProgressListener() {

 @Override
 public void progressChanged(ProgressStatus status) {
 // Obtain the average download rate.
 System.out.println("AverageSpeed:" + status.getAverageSpeed());
 // Obtain the download progress in percentage.
 System.out.println("TransferPercentage:" + status.getTransferPercentage());
 }
});
// Refresh the upload progress each time 1 MB data is uploaded.
request.setProgressInterval(1024 * 1024L);
ObsObject obsObject = obsClient.getObject(request);

// Read the object contents.
System.out.println("Object content:");
InputStream input = obsObject.getObjectContent();
byte[] b = new byte[1024];
ByteArrayOutputStream bos = new ByteArrayOutputStream();
int len;
while ((len=input.read(b)) != -1){
 bos.write(b, 0, len);
}

System.out.println(new String(bos.toByteArray()));
bos.close();
input.close();

You can obtain the download progress when downloading an object in streaming, partial,
or resumable mode.

8.5 Performing a Conditioned Download
When downloading an object, you can specify one or more conditions. Only when
the conditions are met, the object will be downloaded. Otherwise, an exception
will be thrown and the download will fail.

You can set the following conditions.

Parameter Description Method in OBS Java
SDK

If-Modified-
Since

Returns the object if it is modified
after the time specified by this
parameter; otherwise, an exception is
thrown.

GetObjectRequest.setIfM
odifiedSince

If-
Unmodified
-Since

Returns the object if it remains
unchanged since the time specified by
this parameter; otherwise, an
exception is thrown.

GetObjectRequest.setIfU
nmodifiedSince

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 56

Parameter Description Method in OBS Java
SDK

If-Match Returns the source object if its ETag is
the same as the one specified by this
parameter; otherwise, an exception is
thrown.

GetObjectRequest.setIfM
atchTag

If-None-
Match

Returns the source object if its ETag is
different from the one specified by
this parameter; otherwise, an
exception is thrown.

GetObjectRequest.setIfN
oneMatchTag

● The ETag of an object is the MD5 check value of the object.

● If a request includes If-Unmodified-Since or If-Match and the specified condition is not
met, 412 Precondition Failed will be returned.

● If a request includes If-Modified-Since or If-None-Match, and the specified condition is
not met, 304 Not Modified will be returned.

Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

GetObjectRequest request = new GetObjectRequest("bucketname", "objectname");
request.setRangeStart(0l);
request.setRangeEnd(1000l);

request.setIfModifiedSince(new SimpleDateFormat("yyyy-MM-dd").parse("2016-01-01"));
ObsObject obsObject = obsClient.getObject(request);

obsObject.getObjectContent().close();

8.6 Rewriting Response Headers
When downloading an object, you can rewrite some HTTP/HTTPS response
headers. The following table lists rewritable response headers.

Paramete
r

Description Method in OBS Java
SDK

contentTy
pe

Rewrites Content-Type in HTTP/HTTPS
responses.

ObjectRepleaceMetada-
ta.setContentType

contentLa
nguage

Rewrites Content-Language in HTTP/
HTTPS responses.

ObjectRepleaceMetada-
ta.setContentLanguage

expires Rewrites Expires in HTTP/HTTPS
responses.

ObjectRepleaceMetada-
ta.setExpires

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 57

Paramete
r

Description Method in OBS Java
SDK

cacheCon
trol

Rewrites Cache-Control in HTTP/HTTPS
responses.

ObjectRepleaceMetada-
ta.setCacheControl

contentDi
sposition

Rewrites Content-Disposition in HTTP/
HTTPS responses.

ObjectRepleaceMetada-
ta.setContentDisposition

contentEn
coding

Rewrites Content-Encoding in HTTP/
HTTPS responses.

ObjectRepleaceMetada-
ta.setContentEncoding

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

GetObjectRequest request = new GetObjectRequest("bucketname", "objectname");
ObjectRepleaceMetadata replaceMetadata = new ObjectRepleaceMetadata();
replaceMetadata.setContentType("image/jpeg");
request.setReplaceMetadata(replaceMetadata);

ObsObject obsObject = obsClient.getObject(request);
System.out.println(obsObject.getMetadata().getContentType());

obsObject.getObjectContent().close();

8.7 Obtaining Customized Metadata
After an object is successfully downloaded, its customized data is returned. Sample
code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload the object and customize the metadata.
PutObjectRequest request = new PutObjectRequest("bucketname", "objectname");
ObjectMetadata metadata = new ObjectMetadata();
metadata.addUserMetadata("property", "property-value");
request.setMetadata(metadata);
obsClient.putObject(request);

// Download the object and obtain the customized metadata.
ObsObject obsObject = obsClient.getObject("bucketname", "objectname");
System.out.println(obsObject.getMetadata().getUserMetadata("property"));

obsObject.getObjectContent().close();

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 58

8.8 Downloading a Cold Object
If you want to download a Cold object, you need to restore the object first. Two
restore options are supported, as described in the following table:

Option Description Value in OBS Java SDK

Expedited Data can be restored within 1
to 5 minutes.

RestoreTierEnum.EXPEDITED

Standard Data can be restored within 3
to 5 hours. This is the default
option.

RestoreTierEnum.STANDARD

You can call ObsClient.restoreObject to restore a Cold object. Sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

RestoreObjectRequest request = new RestoreObjectRequest();
request.setBucketName("bucketname");
request.setObjectKey("objectname");
request.setDays(1);
request.setRestoreTier(RestoreTierEnum.EXPEDITED);
obsClient.restoreObject(request);

// Wait until the object is restored.
Thread.sleep(60 * 6 * 1000);

// Download an object.
ObsObject obsObject = obsClient.getObject("bucketname", "objectname");

obsObject.getObjectContent().close();

● The object specified in ObsClient.restoreObject must be in the OBS Cold storage class.
Otherwise, an exception will be thrown when you call this API.

● RestoreObjectRequest.setDays specifies the retention period of restored object,
ranging from 1 to 30.

● RestoreObjectRequest.setRestoreTier specifies the restore option, which indicates the
time spent on restoring an object.

8.9 Performing a Resumable Download
Downloading large files often fails due to poor network conditions or program
breakdowns. It is a waste of resources to restart the download process upon a
download failure, and the restarted download process may still suffer from the
unstable network. To resolve such issues, you can use the API for resumable
download, whose working principle is to divide the to-be-downloaded file into

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 59

multiple parts and download them separately. The download result of each part is
recorded in a checkpoint file in real time. Only when all parts are successfully
downloaded, the result indicating a successful download will be returned.
Otherwise, an exception is thrown to remind you of calling the API again for re-
downloading. Based on the download status of each part recorded in the
checkpoint file, the re-downloading will download the parts failed to be
downloaded previously, instead of downloading all parts. By virtue of this,
resources are saved and efficiency is improved.

You can call ObsClient.downloadFile to perform a resumable download. The
following table describes the parameters involved in this API.

Parameter Description Method in OBS Java
SDK

bucketName (Mandatory) Bucket name DownloadFileRequest.set
BucketName

objectKey (Mandatory) Object name DownloadFileRequest.set
ObjectKey

downloadFil
e

Full path of the local directory to
which the object is downloaded. If the
value of this parameter is null, the
downloaded object is saved in the
directory where the program is
executed.

DownloadFileRequest.set
DownloadFile

partSize Part size, in bytes. The value ranges
from 100 KB to 5 GB and defaults to
9 MB.

DownloadFileRequest.set
PartSize

taskNum Maximum number of parts that can
be concurrently downloaded. The
default value is 1.

DownloadFileRequest.set
TaskNum

enableCheck
point

Whether to enable the resumable
download mode. The default value is
false, which indicates that this mode
is disabled.

DownloadFileRequest.set
EnableCheckpoint

checkpointFi
le

File used to record the download
progress. This parameter is effective
only in the resumable download
mode. If the value of this parameter is
null, the file will be in the same local
directory as the downloaded object.

DownloadFileRequest.set
CheckpointFile

versionId Object version DownloadFileRequest.set
VersionId

ifModifiedSi
nce

Returns the object if it is modified
after the time specified by this
parameter; otherwise, an exception is
thrown.

DownloadFileRequest.set
IfModifiedSince

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 60

Parameter Description Method in OBS Java
SDK

ifUnmodifie
dSince

Returns the object if it remains
unchanged since the time specified by
this parameter; otherwise, an
exception is thrown.

DownloadFileRequest.set
IfUnmodifiedSince

ifMatchTag Returns the source object if its ETag is
the same as the one specified by this
parameter; otherwise, an exception is
thrown.

DownloadFileRequest.set
IfMatchTag

ifNoneMatc
hTag

Returns the source object if its ETag is
different from the one specified by
this parameter; otherwise, an
exception is thrown.

DownloadFileRequest.set
IfNoneMatchTag

progressList
ener

Configure the data transmission
listener to obtain download
progresses.

DownloadFileRequest.set
ProgressListener

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
DownloadFileRequest request = new DownloadFileRequest("bucketname", "objectname");
// Set the local path to which the object is downloaded.
request.setDownloadFile("localfile");
// Set the maximum number of parts that can be concurrently downloaded.
request.setTaskNum(5);
// Set the part size to 10 MB.
request.setPartSize(10 * 1024 * 1024);
// Enable resumable download.
request.setEnableCheckpoint(true);
try{
 // Perform a resumable download.
 DownloadFileResult result = obsClient.downloadFile(request);
}catch (ObsException e) {
 // When an exception occurs, you can call the API for resumable download again to perform re-
downloading.
}

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 61

● The API for resumable download, which is implemented based on partial download, is
an encapsulated and enhanced version of partial download.

● This API saves resources and improves efficiency upon the re-download, and speeds up
the download process by concurrently downloading parts. Because this API is invisible to
users, users are unaware of internal service details, such as the creation and deletion of
checkpoint files, division of objects, and concurrent download of parts.

● The default value of the enableCheckpoint parameter is false, which indicates that the
resumable download mode is disabled. In such cases, this API degrades to the simple
encapsulation of partial download, and no checkpoint file will be generated.

● checkpointFile is effective only when enableCheckpoint is true.

Object Storage Service
Java SDK Developer Guide 8 Object Download

2020-02-26 62

9 Object Management

9.1 Obtaining Object Properties
You can call ObsClient.getObjectMetadata to obtain properties of an object,
including the length, MIME type, customized metadata. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectMetadata metadata = obsClient.getObjectMetadata("bucketname", "objectname");
System.out.println("\t" + metadata.getContentType());
System.out.println("\t" + metadata.getContentLength());
System.out.println("\t" + metadata.getUserMetadata("property"));

9.2 Managing Object ACLs
Object ACLs, similar to bucket ACLs, support pre-defined access control policies
and direct configuration. For details, see Managing Bucket ACLs.

An object ACL can be configured in three modes:

1. Specify a pre-defined access control policy during object upload.
2. Call ObsClient.setObjectAcl to specify a pre-defined access control policy.
3. Call ObsClient.setObjectAcl to set the ACL directly.

Specifying a Pre-defined Access Control Policy During Object Upload
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 63

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0066088967.html

PutObjectRequest request = new PutObjectRequest();
request.setBucketName("bucketname");
request.setObjectKey("objectname");
request.setFile(new File("localfile"));
// Set the object ACL to public-read.
request.setAcl(AccessControlList.REST_CANNED_PUBLIC_READ);
obsClient.putObject(request);

Setting a Pre-defined Access Control Policy for an Object

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the object ACL to private.
obsClient.setObjectAcl("bucketname", "objectname", AccessControlList.REST_CANNED_PRIVATE);

Directly Setting an Object ACL

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = new AccessControlList();
Owner owner = new Owner();
owner.setId("ownerid");
acl.setOwner(owner);
// Grant the FULL_CONTROL permission to a specified user.
acl.grantPermission(new CanonicalGrantee("userid"), Permission.PERMISSION_FULL_CONTROL);
// Grant the READ permission to all users.
acl.grantPermission(GroupGrantee.ALL_USERS, Permission.PERMISSION_READ);
obsClient.setObjectAcl("bucketname", "objectname", acl);

The owner or grantee ID needed in the ACL indicates the account ID, which can be viewed
on the My Credentials page of OBS Console.

Obtaining an Object ACL

You can call ObsClient.getObjectAcl to obtain an object ACL. Sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = obsClient.getObjectAcl("bucketname", "objectname");
System.out.println(acl);

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 64

9.3 Listing Objects
You can call ObsClient.listObjects to list objects in a bucket.

The following table describes the parameters involved in this API.

Paramet
er

Description Method in OBS Java
SDK

bucketN
ame

Bucket name ListObjectsRequest.setBu
cketName

prefix Name prefix that the objects to be listed
must contain

ListObjectsRequest.setPr
efix

marker Object name to start with when listing
objects in a bucket. All objects are listed
in the lexicographical order.

ListObjectsRequest.setM
arker

maxKeys Maximum number of objects returned in
the response. The value ranges from 1 to
1000. If the value is not in this range,
1000 objects are returned by default.

ListObjectsRequest.setM
axKeys

delimiter Character used to group object names. If
the object name contains the delimiter
parameter, the character string from the
first character to the first delimiter in the
object name is grouped under a single
result element, commonPrefix. (If a
prefix is specified in the request, the
prefix must be removed from the object
name.)

ListObjectsRequest.setDe
limiter

Listing Objects in Simple Mode
The following sample code shows how to list objects in simple mode. A maximum
of 1000 objects can be listed.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectListing result = obsClient.listObjects("bucketname");
for(ObsObject obsObject : result.getObjects()){
 System.out.println("\t" + obsObject.getObjectKey());
 System.out.println("\t" + obsObject.getOwner());
}

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 65

● A maximum of 1000 objects can be listed each time. If a bucket contains more than
1000 objects and ObjectListing.isTruncated is true in the returned result, not all
objects are listed. In such cases, you can use ObjectListing.getNextMarker to obtain
the start position for next listing.

● If you want to obtain all objects in a specified bucket, you can use the paging mode for
listing objects.

Listing Objects by Specifying the Number
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
// Specify the number of objects to be listed to 100.
request.setMaxKeys(100);
ObjectListing result = obsClient.listObjects(request);
for(ObsObject obsObject : result.getObjects()){
 System.out.println("\t" + obsObject.getObjectKey());
 System.out.println("\t" + obsObject.getOwner());
}

Listing Objects by Specifying a Prefix
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
// Set the number to 100 and the prefix to prefix.
request.setMaxKeys(100);
request.setPrefix("prefix");
ObjectListing result = obsClient.listObjects(request);
for(ObsObject obsObject : result.getObjects()){
 System.out.println("\t" + obsObject.getObjectKey());
 System.out.println("\t" + obsObject.getOwner());
}

Listing Objects by Specifying the Start Position
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
// List 100 objects following test in lexicographic order.
request.setMaxKeys(100);
request.setMarker("test");

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 66

ObjectListing result = obsClient.listObjects(request);
for(ObsObject obsObject : result.getObjects()){
 System.out.println("\t" + obsObject.getObjectKey());
 System.out.println("\t" + obsObject.getOwner());
}

Listing All Objects in Paging Mode
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
// Set the number of objects displayed per page to 100.
request.setMaxKeys(100);

ObjectListing result;
do{
 result = obsClient.listObjects(request);
 for(ObsObject obsObject : result.getObjects()){
 System.out.println("\t" + obsObject.getObjectKey());
 System.out.println("\t" + obsObject.getOwner());
 }

 request.setMarker(result.getNextMarker());
}while(result.isTruncated());

Listing All Objects in a Folder
There is no folder concept in OBS. All elements in buckets are objects. Folders are
actually objects whose sizes are 0 and whose names end with a slash (/). When
you set a folder name as the prefix, objects in this folder will be listed. Sample
code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
// Set the prefix of objects in the folder to dir/.
request.setPrefix("dir/");
request.setMaxKeys(1000);

ObjectListing result;

do{
 result = obsClient.listObjects(request);
 for (ObsObject obsObject : result.getObjects())
 {
 System.out.println("\t" + obsObject.getObjectKey());
 System.out.println("\t" + obsObject.getOwner());
 }
 request.setMarker(result.getNextMarker());
}while(result.isTruncated());

Listing All Objects According to Folders in a Bucket
Sample code:

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 67

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
request.setMaxKeys(1000);
// Set folder isolators to slashes.
request.setDelimiter("/");
ObjectListing result = obsClient.listObjects(request);
System.out.println("Objects in the root directory:");
for(ObsObject obsObject : result.getObjects()){
 System.out.println("\t" + obsObject.getObjectKey());
 System.out.println("\t" + obsObject.getOwner());
}
listObjectsByPrefix(obsClient, request, result);

The following is the sample code of the listObjectsByPrefix function, which is
used to recursively list objects in sub-folders.

static void listObjectsByPrefix(ObsClient obsClient, ListObjectsRequest request, ObjectListing result) throws
ObsException
{
 for(String prefix : result.getCommonPrefixes()){
 System.out.println("Objects in folder [" + prefix + "]:");
 request.setPrefix(prefix);
 result = obsClient.listObjects(request);
 for(ObsObject obsObject : result.getObjects()){
 System.out.println("\t" + obsObject.getObjectKey());
 System.out.println("\t" + obsObject.getOwner());
 }
 listObjectsByPrefix(obsClient, request, result);
 }
}

● The sample code does not apply to scenarios where the number of objects in a folder
exceeds 1,000.

● Because objects and sub-folders in a folder are to be listed and all the objects end with
a slash (/), delimiter is always a slash (/).

● In the returned result of each recursion, ObjectListing.getObjects includes the objects
in the folder and ObjectListing.getCommonPrefixes includes the sub-folders in the
folder.

9.4 Deleting Objects

Exercise caution when performing this operation. If the versioning function is disabled for
the bucket where the object is located, the object cannot be restored after being deleted.

Deleting a Single Object

You can call ObsClient.deleteObject to delete a single object. Sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 68

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
obsClient.deleteObject("bucketname", "objectname");

Deleting Objects in a Batch

You can call ObsClient.deleteObjects to delete objects in a batch.

A maximum of 1,000 objects can be deleted each time. Two response modes are
supported: verbose (detailed) and quiet (brief).

● In verbose mode (default mode), the returned response includes the deletion
result of each requested object.

● In quiet mode, the returned response includes only results of objects failed to
be deleted.

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsRequest request = new ListVersionsRequest("bucketname");
// Delete 100 objects at a time.
request.setMaxKeys(100);
ListVersionsResult result;
do {
 result = obsClient.listVersions(request);

 DeleteObjectsRequest deleteRequest = new DeleteObjectsRequest("bucketname");

 for(VersionOrDeleteMarker v : result.getVersions()) {
 deleteRequest.addKeyAndVersion(v.getKey(), v.getVersionId());
 }

 DeleteObjectsResult deleteResult = obsClient.deleteObjects(deleteRequest);
// Obtain the list of successfully deleted objects.
 System.out.println(deleteResult.getDeletedObjectResults());
// Obtain the list of objects failed to be deleted.
 System.out.println(deleteResult.getErrorResults());

 request.setKeyMarker(result.getNextKeyMarker());
 request.setVersionIdMarker(result.getNextVersionIdMarker());
}while(result.isTruncated());

9.5 Copying an Object
The object copy operation creates a copy for an existing object in OBS.

You can call ObsClient.copyObject to copy an object. When copying an object,
you can rewrite properties and ACL for it, as well as set restriction conditions.

Constraints
● The user has the read permission on the source object to be copied.
● Cross-region replication is not supported.

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 69

● The source object to be copied cannot be larger than 5 GB. If the size is less
than 1 GB, you are advised to copy it directly. If the size is greater than 1 GB,
you are advised to perform a multipart copy.

● If the source object to be copied is in the Cold storage class, you must restore
it first.

Copying an Object Directly
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

CopyObjectResult result = obsClient.copyObject("sourcebucketname", "sourceobjectname",
"destbucketname", "destobjectname");
System.out.println("\t" + result.getEtag());

Rewriting Object Properties
The following sample code shows how to rewrite object properties.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

CopyObjectRequest request = new CopyObjectRequest("sourcebucketname", "sourceobjectname",
"destbucketname", "destobjectname");
// Rewrite object properties.
request.setReplaceMetadata(true);
ObjectMetadata newObjectMetadata = new ObjectMetadata();
newObjectMetadata.setContentType("image/jpeg");
newObjectMetadata.addUserMetadata("property", "property-value");
newObjectMetadata.setObjectStorageClass(StorageClassEnum.WARM);
request.setNewObjectMetadata(newObjectMetadata);
CopyObjectResult result = obsClient.copyObject(request);
System.out.println("\t" + result.getEtag());

CopyObjectRequest.setReplaceMetadata and
CopyObjectRequest.setNewObjectMetadata must be used together.

Copying an Object by Specifying Conditions
When copying an object, you can specify one or more restriction conditions. If the
conditions are met, the object will be copied. Otherwise, an exception will be
thrown and the copy will fail.

You can set the following conditions.

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 70

Parameter Description Method in OBS Java
SDK

Copy-Source-If-Modified-
Since

Copies the source object
if it is changed after the
time specified by this
parameter; otherwise, an
exception is thrown.

CopyObjectRequest.setIf
ModifiedSince

Copy-Source-If-
Unmodified-Since

Copies the source object
if it is changed before
the time specified by this
parameter; otherwise, an
exception is thrown.

CopyObjectRequest.setIf
UnmodifiedSince

Copy-Source-If-Match Copies the source object
if its ETag is the same as
the one specified by this
parameter; otherwise, an
exception is thrown.

CopyObjectRequest.setIf
MatchTag

Copy-Source-If-None-
Match

Copies the source object
if its ETag is different
from the one specified
by this parameter;
otherwise, an exception
is thrown.

CopyObjectRequest.setIf
NoneMatchTag

● The ETag of the source object is the MD5 check value of the source object.
● If Copy-Source-If-Unmodified-Since, Copy-Source-If-Match, Copy-Source-If-

Modified-Since, or Copy-Source-If-None-Match is included and its specified condition
is not met, an exception, whose HTTP status code is 412 Precondition Failed, will be
thrown.

● Copy-Source-If-Modified-Since and Copy-Source-If-None-Match can be used
together, and so do Copy-Source-If-Unmodified-Since and Copy-Source-If-Match.

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

CopyObjectRequest request = new CopyObjectRequest("sourcebucketname", "sourceobjectname",
"destbucketname", "destobjectname");

request.setIfModifiedSince(new SimpleDateFormat("yyyy-MM-dd").parse("2016-01-01"));
request.setIfNoneMatchTag("none-match-etag");

CopyObjectResult result = obsClient.copyObject(request);
System.out.println("\t" + result.getEtag());

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 71

Rewriting an Object ACL
Sample code:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

CopyObjectRequest request = new CopyObjectRequest("sourcebucketname", "sourceobjectname",
"destbucketname", "destobjectname");

// Modify the Object ACL to public-read.
request.setAcl(AccessControlList.REST_CANNED_PUBLIC_READ);
CopyObjectResult result = obsClient.copyObject(request);
System.out.println("\t" + result.getEtag());

Performing a Multipart Copy
As a special case of multipart upload, multipart copy implements multipart upload
by copying the whole or part of an object in a bucket. You can call
ObsClient.copyPart to copy parts. Sample code is as follows:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

final String destBucketName = "destbucketname";
final String destObjectKey = "destobjectname";
final String sourceBucketName = "sourcebucketname";
final String sourceObjectKey = "sourceobjectname";
// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Initialize the thread pool.
ExecutorService executorService = Executors.newFixedThreadPool(20);

// Initialize the multipart upload.
InitiateMultipartUploadRequest request = new InitiateMultipartUploadRequest(destBucketName,
destObjectKey);
InitiateMultipartUploadResult result = obsClient.initiateMultipartUpload(request);

final String uploadId = result.getUploadId();
System.out.println("\t"+ uploadId + "\n");

// Obtain information about the large object.
ObjectMetadata metadata = obsClient.getObjectMetadata(sourceBucketName, sourceObjectKey);
// Set the part size to 100 MB.
long partSize = 100 * 1024 * 1024L;
long objectSize = metadata.getContentLength();

// Calculate the number of parts need to be copied.
long partCount = objectSize % partSize == 0 ? objectSize / partSize : objectSize / partSize + 1;

final List<PartEtag> partEtags = Collections.synchronizedList(new ArrayList<PartEtag>());

// Start copying parts concurrently.
for (int i = 0; i < partCount; i++)
{
// Start position for copying parts
 final long rangeStart = i * partSize;
// End position for copying parts
 final long rangeEnd = (i + 1 == partCount) ? objectSize - 1 : rangeStart + partSize - 1;
 // Part number
 final int partNumber = i + 1;
 executorService.execute(new Runnable()

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 72

 {

 @Override
 public void run()
 {
 CopyPartRequest request = new CopyPartRequest();
 request.setUploadId(uploadId);
 request.setSourceBucketName(sourceBucketName);
 request.setSourceObjectKey(sourceObjectKey);
 request.setDestinationBucketName(destBucketName);
 request.setDestinationObjectKey(destObjectKey);
 request.setByteRangeStart(rangeStart);
 request.setByteRangeEnd(rangeEnd);
 request.setPartNumber(partNumber);
 CopyPartResult result;
 try
 {
 result = obsClient.copyPart(request);
 System.out.println("Part#" + partNumber + " done\n");
 partEtags.add(new PartEtag(result.getEtag(), result.getPartNumber()));
 }
 catch (ObsException e)
 {
 e.printStackTrace();
 }
 }
 });
}

// Wait until the copy is complete.
executorService.shutdown();
while (!executorService.isTerminated())
{
 try
 {
 executorService.awaitTermination(5, TimeUnit.SECONDS);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
}

// Combine parts.
CompleteMultipartUploadRequest completeMultipartUploadRequest = new
CompleteMultipartUploadRequest(destBucketName, destObjectKey, uploadId, partEtags);
obsClient.completeMultipartUpload(completeMultipartUploadRequest);

Object Storage Service
Java SDK Developer Guide 9 Object Management

2020-02-26 73

10 Authorized Access

10.1 Using a URL for Authorized Access
ObsClient allows you to create a URL whose Query parameters are carried with
authentication information by specifying the AK and SK, HTTP method, and
request parameters. You can provide other users with this URL for temporary
access. When generating a URL, you need to specify the validity period of the URL
to restrict the access duration of visitors.

If you want to grant other users the permission to perform other operations on
buckets or objects (for example, upload or download objects), generate a URL
with the corresponding request (for example, to upload an object using the URL
that generates the PUT request) and provide the URL for other users.

The following table lists operations can be performed through a signed URL.

Operat
ion

HTTP Request Method
(Value in OBS Java SDK)

Special
Operator
(Value in OBS
Java SDK)

Bucket
Name
Require
d

Object
Name
Require
d

PUT
Bucket

HttpMethodEnum.PUT N/A Yes No

GET
Buckets

HttpMethodEnum.GET N/A No No

DELETE
Bucket

HttpMethodEnum.DELETE N/A Yes No

GET
Objects

HttpMethodEnum.GET N/A Yes No

GET
Object
version
s

HttpMethodEnum.GET SpecialParamEn
um.VERSIONS

Yes No

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 74

Operat
ion

HTTP Request Method
(Value in OBS Java SDK)

Special
Operator
(Value in OBS
Java SDK)

Bucket
Name
Require
d

Object
Name
Require
d

List
Multip
art
upload
s

HttpMethodEnum.GET SpecialParamEn
um.UPLOADS

Yes No

Obtain
Bucket
Metada
ta

HttpMethodEnum.HEAD N/A Yes No

GET
Bucket
locatio
n

HttpMethodEnum.GET SpecialParamEn
um.LOCATION

Yes No

GET
Bucket
storage
info

HttpMethodEnum.GET SpecialParamEn
um.STORAGEIN
FO

Yes No

PUT
Bucket
quota

HttpMethodEnum.PUT SpecialParamEn
um.QUOTA

Yes No

GET
Bucket
quota

HttpMethodEnum.GET SpecialParamEn
um.QUOTA

Yes No

PUT
Bucket
storage
Policy

HttpMethodEnum.PUT SpecialParamEn
um.STORAGEP
OLICY

Yes No

GET
Bucket
storage
Policy

HttpMethodEnum.GET SpecialParamEn
um.STORAGEP
OLICY

Yes No

PUT
Bucket
acl

HttpMethodEnum.PUT SpecialParamEn
um.ACL

Yes No

GET
Bucket
acl

HttpMethodEnum.GET SpecialParamEn
um.ACL

Yes No

PUT
Bucket
logging

HttpMethodEnum.PUT SpecialParamEn
um.LOGGING

Yes No

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 75

Operat
ion

HTTP Request Method
(Value in OBS Java SDK)

Special
Operator
(Value in OBS
Java SDK)

Bucket
Name
Require
d

Object
Name
Require
d

GET
Bucket
logging

HttpMethodEnum.GET SpecialParamEn
um.LOGGING

Yes No

PUT
Bucket
policy

HttpMethodEnum.PUT SpecialParamEn
um.POLICY

Yes No

GET
Bucket
policy

HttpMethodEnum.GET SpecialParamEn
um.POLICY

Yes No

DELETE
Bucket
policy

HttpMethodEnum.DELETE SpecialParamEn
um.POLICY

Yes No

PUT
Bucket
lifecycl
e

HttpMethodEnum.PUT SpecialParamEn
um.LIFECYCLE

Yes No

GET
Bucket
lifecycl
e

HttpMethodEnum.GET SpecialParamEn
um.LIFECYCLE

Yes No

DELETE
Bucket
lifecycl
e

HttpMethodEnum.DELETE SpecialParamEn
um.LIFECYCLE

Yes No

PUT
Bucket
website

HttpMethodEnum.PUT SpecialParamEn
um.WEBSITE

Yes No

GET
Bucket
website

HttpMethodEnum.GET SpecialParamEn
um.WEBSITE

Yes No

DELETE
Bucket
website

HttpMethodEnum.DELETE SpecialParamEn
um.WEBSITE

Yes No

PUT
Bucket
versioni
ng

HttpMethodEnum.PUT SpecialParamEn
um.VERSIONIN
G

Yes No

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 76

Operat
ion

HTTP Request Method
(Value in OBS Java SDK)

Special
Operator
(Value in OBS
Java SDK)

Bucket
Name
Require
d

Object
Name
Require
d

GET
Bucket
versioni
ng

HttpMethodEnum.GET SpecialParamEn
um.VERSIONIN
G

Yes No

PUT
Bucket
cors

HttpMethodEnum.PUT SpecialParamEn
um.CORS

Yes No

GET
Bucket
cors

HttpMethodEnum.GET SpecialParamEn
um.CORS

Yes No

DELETE
Bucket
cors

HttpMethodEnum.DELETE SpecialParamEn
um.CORS

Yes No

PUT
Bucket
notifica
tion

HttpMethodEnum.PUT SpecialParamEn
um.NOTIFICATI
ON

Yes No

GET
Bucket
notifica
tion

HttpMethodEnum.GET SpecialParamEn
um.NOTIFICATI
ON

Yes No

PUT
Object

HttpMethodEnum.PUT N/A Yes Yes

Append
Object

HttpMethodEnum.POST SpecialParamEn
um.APPEND

Yes Yes

GET
Object

HttpMethodEnum.GET N/A Yes Yes

PUT
Object
- Copy

HttpMethodEnum.PUT N/A Yes Yes

DELETE
Object

HttpMethodEnum.DELETE N/A Yes Yes

DELETE
Objects

HttpMethodEnum.POST SpecialParamEn
um.DELETE

Yes Yes

Obtain
Object
Metada
ta

HttpMethodEnum.HEAD N/A Yes Yes

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 77

Operat
ion

HTTP Request Method
(Value in OBS Java SDK)

Special
Operator
(Value in OBS
Java SDK)

Bucket
Name
Require
d

Object
Name
Require
d

PUT
Object
acl

HttpMethodEnum.PUT SpecialParamEn
um.ACL

Yes Yes

GET
Object
acl

HttpMethodEnum.GET SpecialParamEn
um.ACL

Yes Yes

Initiate
Multip
art
Upload

HttpMethodEnum.POST SpecialParamEn
um.UPLOADS

Yes Yes

PUT
Part

HttpMethodEnum.PUT N/A Yes Yes

PUT
Part -
Copy

HttpMethodEnum.PUT N/A Yes Yes

List
Parts

HttpMethodEnum.GET N/A Yes Yes

Comple
te
Multip
art
Upload

HttpMethodEnum.POST N/A Yes Yes

DELETE
Multip
art
Upload

HttpMethodEnum.DELETE N/A Yes Yes

POST
Object
restore

HttpMethodEnum.POST SpecialParamEn
um.RESTORE

Yes Yes

To use a URL for authorized access, perform the following two steps:

Step 1 Call ObsClient.createTemporarySignature to generate a signed URL.

Step 2 Use any HTTP library to make an HTTP/HTTPS request to OBS.

----End

The following code provides an example showing how to use a URL for authorized
access, including bucket creation, as well as object upload, download, listing, and
deletion.

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 78

Creating a Bucket
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.PUT,
expireSeconds);
request.setBucketName("bucketname");
TemporarySignatureResponse response = obsClient.createTemporarySignature(request);
System.out.println("Creating bucket using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}
// Make a PUT request to create a bucket.
String location = "your bucket location";
Request httpRequest = builder.url(response.getSignedUrl()).put(RequestBody.create(null,
"<CreateBucketConfiguration><LocationConstraint>" + location + "</LocationConstraint></
CreateBucketConfiguration>".getBytes())).build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

Uploading an Object
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

Map<String, String> headers = new HashMap<String, String>();
String contentType = "text/plain";
headers.put("Content-Type", contentType);

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.PUT,
expireSeconds);
request.setBucketName("bucketname");
request.setObjectKey("objectname");
request.setHeaders(headers);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.out.println("Creating object using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());
Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 79

//Make a PUT request to upload an object.
Request httpRequest =
builder.url(response.getSignedUrl()).put(RequestBody.create(MediaType.parse(contentType), "Hello
OBS".getBytes("UTF-8"))).build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

Downloading an Object
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.GET,
expireSeconds);
request.setBucketName("bucketname");
request.setObjectKey("objectname");

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.out.println("Getting object using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());
Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}

//Make a GET request to download an object.
Request httpRequest = builder.url(response.getSignedUrl()).get().build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

Listing Objects
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.GET,

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 80

expireSeconds);
request.setBucketName("bucketname");

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.out.println("Getting object list using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());
Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}

//Make a GET request to obtain the object list.
Request httpRequest = builder.url(response.getSignedUrl()).get().build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

Deleting an Object
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.DELETE,
expireSeconds);
request.setBucketName("bucketname");
request.setObjectKey("objectname");

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.out.println("Deleting object using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());
Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}

//Make a DELETE request to delete an object.
Request httpRequest = builder.url(response.getSignedUrl()).delete().build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 81

Initiating Multipart Upload
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.POST,
expireSeconds);
request.setBucketName("bucketname");
request.setObjectKey("objectname");
request.setSpecialParam(SpecialParamEnum.UPLOADS);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.out.println("initiate multipart upload using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}

// POST a request to initialize a multipart upload.
Request httpRequest = builder.url(response.getSignedUrl()).post(RequestBody.create(null, "")).build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

Uploading Parts
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.POST,
expireSeconds);
request.setBucketName("bucketname");
request.setObjectKey("objectname");

Map<String, Object> queryParams = new HashMap<String, Object>();
// Set the partNumber parameter, for example, queryParams.put("partNumber", "1").
queryParams.put("partNumber", "partNumber");
queryParams.put("uploadId", "your uploadId");

request.setQueryParams(queryParams);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.out.println("upload part using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 82

Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}

// PUT a request to upload object parts.
Request httpRequest = builder.url(response.getSignedUrl()).put(RequestBody.create(null, new byte[6 * 1024
* 1024])).build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

Listing Uploaded Parts
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.GET,
expireSeconds);
request.setBucketName("bucketname");
request.setObjectKey("objectname");

Map<String, Object> queryParams = new HashMap<String, Object>();
queryParams.put("uploadId", "your uploadId");
request.setQueryParams(queryParams);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.out.println("list parts using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}

// Make a GET request to list uploaded parts.
Request httpRequest = builder.url(response.getSignedUrl()).get().build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

Merging Uploaded Parts
String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 83

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.POST,
expireSeconds);
request.setBucketName("bucketname");
request.setObjectKey("objectname");

Map<String, String> headers = new HashMap<String, String>();
String contentType = "application/xml";
headers.put("Content-Type", contentType);
request.setHeaders(headers);

Map<String, Object> queryParams = new HashMap<String, Object>();
queryParams.put("uploadId", "your uploadId");
request.setQueryParams(queryParams);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.out.println("complete multipart upload using temporary signature url:");
System.out.println("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();
for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
 builder.header(entry.getKey(), entry.getValue());
}

// The following content is an example code. You need to assemble the following content by listing the
response results of the uploaded parts.
String content = "<CompleteMultipartUpload>";
content += "<Part>";
content += "<PartNumber>1</PartNumber>";
content += "<ETag>da6a0d097e307ac52ed9b4ad551801fc</ETag>";
content += "</Part>";
content += "<Part>";
content += "<PartNumber>2</PartNumber>";
content += "<ETag>da6a0d097e307ac52ed9b4ad551801fc</ETag>";
content += "</Part>";
content += "</CompleteMultipartUpload>";

// POST a request to merge uploaded parts.
Request httpRequest =
builder.url(response.getSignedUrl()).post(RequestBody.create(MediaType.parse(contentType),
content.getBytes("UTF-8"))).build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
 .cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.out.println("\tStatus:" + res.code());
if (res.body() != null) {
 System.out.println("\tContent:" + res.body().string() + "\n");
}
res.close();

● HttpMethodEnum is an enumeration function defined in OBS Java SDK, whose value
indicates the request method types.

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

2020-02-26 84

11 Versioning Management

11.1 Versioning Overview
OBS can store multiple versions of an object. You can quickly search for and
restore different versions as well as restore data in the event of misoperations or
application faults.

For details, see Versioning.

11.2 Setting Versioning Status for a Bucket
You can call ObsClient.setBucketVersioning to set the versioning status for a
bucket. OBS supports two versioning statuses.

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 85

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853504.html

Versioning
Status

Description Value in OBS Java SDK

Enabled 1. OBS creates a unique version ID for
each uploaded object. Namesake
objects are not overwritten and are
distinguished by their own version
IDs.

2. Objects can be downloaded by
specifying the version ID. By
default, the object of the latest
version is downloaded if no version
ID is specified.

3. Objects can be deleted by
specifying the version ID. If an
object is deleted with no version ID
specified, the object will generate a
delete marker with a unique version
ID but is not physically deleted.

4. Objects of the latest version in a
bucket are returned by default after
ObsClient.listObjects is called. You
can call ObsClient.listVersions to
list a bucket's objects with all
version IDs.

5. Except for delete markers, storage
space occupied by objects with all
version IDs is billed.

VersioningStatusE-
num.ENABLED

Suspended 1. Noncurrent object versions are not
affected.

2. OBS creates version ID null to an
uploaded object and the object will
be overwritten after a namesake
one is uploaded.

3. Objects can be downloaded by
specifying the version ID. By
default, the object of the latest
version is downloaded if no version
ID is specified.

4. Objects can be deleted by
specifying version IDs. If an object is
deleted with no version ID specified,
the object is only attached with a
delete marker whose version ID is
null. Objects with version ID null
are physically deleted.

5. Except for delete markers, storage
space occupied by objects with all
version IDs is billed.

VersioningStatusE-
num.SUSPENDED

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 86

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Enable versioning for a bucket.
obsClient.setBucketVersioning("bucketname", new
BucketVersioningConfiguration(VersioningStatusEnum.ENABLED));

// Suspend versioning for a bucket.
obsClient.setBucketVersioning("bucketname", new
BucketVersioningConfiguration(VersioningStatusEnum.SUSPENDED));

11.3 Viewing Versioning Status of a Bucket
You can call ObsClient.getBucketVersioning to view the versioning status of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketVersioningConfiguration status = obsClient.getBucketVersioning("bucketname");
System.out.println("\t" + status.getVersioningStatus());

11.4 Obtaining a Versioning Object
You can call ObsClient.getObject to obtain a versioning object by specifying the
version ID (versionId). Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set versionId to obtain a versioning object.
ObsObject obsObject = obsClient.getObject("bucketname", "objectname", "versionid");
obsObject.getObjectContent().close();

If version ID is null, the object of the latest version will be downloaded, by default.

11.5 Copying a Versioning Object
You can call ObsClient.copyObject to pass the version ID (versionId) to copy a
versioning object. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 87

CopyObjectRequest request = new CopyObjectRequest();
request.setSourceBucketName("sourebucketname");
request.setSourceObjectKey("sourceobjectname");
// Set the version ID of the object to be copied.
request.setVersionId("versionid");
request.setDestinationBucketName("destbucketname");
request.setDestinationObjectKey("destobjectname");
obsClient.copyObject(request);

11.6 Restoring a Versioning Cold Object
You can call ObsClient.restoreObject to restore a versioning Cold object by
specifying the version ID (versionId). Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

RestoreObjectRequest request = new RestoreObjectRequest("bucketname", "objectname", 1);
// Restore a versioning object in the Expedited mode.
request.setRestoreTier(RestoreTierEnum.EXPEDITED);
request.setVersionId("versionid");
obsClient.restoreObject(request);

11.7 Listing Versioning Objects
You can call ObsClient.listVersions to list versioning objects.

The following table describes the parameters involved in this API.

Paramete
r

Description

bucketNa
me

Bucket name

prefix Name prefix that the objects to be listed must contain

keyMarke
r

Object name to start with when listing versioning objects in a
bucket. All versioning objects whose names follow this parameter
are listed in the lexicographical order.

maxKeys Maximum number of versioning objects returned. The value ranges
from 1 to 1000. If the value is not in this range, 1,000 versioning
objects are returned by default.

delimiter Character used to group object names. If the object name contains
the delimiter parameter, the character string from the first
character to the first delimiter in the object name is grouped under
a single result element, commonPrefix. (If a prefix is specified in
the request, the prefix must be removed from the object name.)

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 88

Paramete
r

Description

versionId
Marker

Indicates the object name to start with when listing objects in a
bucket. All objects are listed in the lexicographical order by object
name and version ID. This parameter must be used together with
keyMarker.

● If the value of versionIdMarker is not a version ID specified by keyMarker,
versionIdMarker is ineffective.

● The returned result of ObsClient.listVersions includes the versioning objects and delete
markers.

Listing Versioning Objects in Simple Mode
The following sample code shows how to list versioning objects in simple mode. A
maximum of 1000 versioning objects can be returned.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsResult result = obsClient.listVersions("bucketname");

for(VersionOrDeleteMarker v : result.getVersions()){
 System.out.println("\t" + v.getKey());
 System.out.println("\t" + v.getOwner());
 System.out.println("\t" + v.isDeleteMarker());
}

● A maximum of 1,000 versioning objects can be listed each time. If a bucket contains
more than 1,000 objects and ListVersionsResult.isTruncated is true in the returned
result, not all versioning objects are listed. In such cases, you can use
ListVersionsResult.getNextKeyMarker and
ListVersionsResult.getNextVersionIdMarker to obtain the start position for next
listing.

● If you want to obtain all versioning objects in a specified bucket, you can use the paging
mode for listing objects.

Listing Versioning Objects by Specifying the Number
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsResult result = obsClient.listVersions("bucketname", 100);
for(VersionOrDeleteMarker v : result.getVersions()){
 System.out.println("\t" + v.getKey());
 System.out.println("\t" + v.getOwner());

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 89

 System.out.println("\t" + v.isDeleteMarker());
}

Listing Versioning Objects by Specifying a Prefix

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// List 100 objects whose name prefix is prefix.
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 100);
request.setPrefix("prefix");
ListVersionsResult result = obsClient.listVersions(request);
for(VersionOrDeleteMarker v : result.getVersions()){
 System.out.println("\t" + v.getKey());
 System.out.println("\t" + v.getOwner());
 System.out.println("\t" + v.isDeleteMarker());
}

Listing Versioning Objects by Specifying the Start Position

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// List 100 versioning objects whose names following test in lexicographic order.
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 100);
request.setKeyMarker("test");
ListVersionsResult result = obsClient.listVersions(request);

for(VersionOrDeleteMarker v : result.getVersions()){
 System.out.println("\t" + v.getKey());
 System.out.println("\t" + v.getOwner());
 System.out.println("\t" + v.isDeleteMarker());
}

Listing All Versioning Objects in Paging Mode

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsResult result;
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 100);
do{
 result = obsClient.listVersions(request);
 for(VersionOrDeleteMarker v : result.getVersions()){
 System.out.println("\t" + v.getKey());
 System.out.println("\t" + v.getOwner());
 System.out.println("\t" + v.isDeleteMarker());
 }
 request.setKeyMarker(result.getNextKeyMarker());
 request.setVersionIdMarker(result.getNextVersionIdMarker());
}while(result.isTruncated());

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 90

Listing All Versioning Objects in a Folder
There is no folder concept in OBS. All elements in buckets are objects. Folders are
actually objects whose sizes are 0 and whose names end with a slash (/). When
you set a folder name as the prefix, objects in this folder will be listed. Sample
code is as follows:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsResult result;
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 100);
// Set the prefix of objects in the folder to dir/.
request.setPrefix("dir/");
do{
 result = obsClient.listVersions(request);
 for(VersionOrDeleteMarker v : result.getVersions()){
 System.out.println("\t" + v.getKey());
 System.out.println("\t" + v.getOwner());
 System.out.println("\t" + v.isDeleteMarker());
 }
 request.setKeyMarker(result.getNextKeyMarker());
 request.setVersionIdMarker(result.getNextVersionIdMarker());
}while(result.isTruncated());

Listing All Versioning Objects According to Folders in a Bucket
Sample code:
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 1000);
request.setDelimiter("/");
ListVersionsResult result = obsClient.listVersions(request);
System.out.println("Objects in the root directory:");
for(VersionOrDeleteMarker v : result.getVersions()){
 System.out.println("\t" + v.getKey());
 System.out.println("\t" + v.getOwner());
 System.out.println("\t" + v.isDeleteMarker());
}

listVersionsByPrefix(obsClient, result);

The following is the sample code of the listVersionsByPrefix function, which is
used to recursively list objects in sub-folders.
static void listVersionsByPrefix(ObsClient obsClient, ListVersionsResult result) throws ObsException{
 for(String prefix : result.getCommonPrefixes()){
 System.out.println("Objects in folder [" + prefix + "]:");
 ListVersionsRequest request = new ListVersionsRequest ("bucketname", 1000);
 request.setDelimiter("/");
 request.setPrefix(prefix)
 result = obsClient.listVersions(request);
 for(VersionOrDeleteMarker v : result.getVersions()){
 System.out.println("\t" + v.getKey());
 System.out.println("\t" + v.getOwner());
 System.out.println("\t" + v.isDeleteMarker());
 }
 listVersionsByPrefix(obsClient, result);
 }
}

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 91

● The previous sample code does not include scenarios where the number of objects in a
folder exceeds 1000.

● Because objects and sub-folders in a folder are to be listed and all the objects end with
a slash (/), delimiter is always a slash (/).

● In the returned result of each recursion, ListVersionsResult.getVersions includes the
versioning objects in the folder and ListVersionsResult.getCommonPrefixes includes
the sub-folders in the folder.

11.8 Setting or Obtaining a Versioning Object ACL

Directly Setting a Versioning Object ACL
You can call ObsClient.setObjectAcl and set the version ID (versionId) to specify
the ACL for a versioning object. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the versioning object ACL to public-read by specifying the pre-defined access control policy.
obsClient.setObjectAcl("bucketname", "objectname", AccessControlList.REST_CANNED_PUBLIC_READ,
"versionid");

AccessControlList acl = new AccessControlList();
Owner owner = new Owner();
owner.setId("ownerid");
acl.setOwner(owner);
// Grant the READ permission to all users.
acl.grantPermission(GroupGrantee.ALL_USERS, Permission.PERMISSION_READ);
// Set the ACL for a versioning object.
obsClient.setObjectAcl("bucketname", "objectname", acl, "versionid");

The owner or grantee ID needed in the ACL indicates the account ID, which can be viewed
on the My Credentials page of OBS Console.

Obtaining a Versioning Object ACL
You can call ObsClient.getObjectAcl to obtain the ACL of a versioning object by
specifying the version ID (versionId). Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = obsClient.getObjectAcl("bucketname", "objectname", "versionid");
System.out.println(acl);

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 92

11.9 Deleting Versioning Objects

Deleting a Single Versioning Object
You can call ObsClient.deleteObject to pass the version ID (versionId) to delete a
versioning object. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
obsClient.deleteObject("bucketname", "objectname", "versionid");

Deleting Versioning Objects in a Batch
You can call ObsClient.deleteObjects to pass the version ID (versionId) of each
to-be-deleted versioning object to delete them. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

DeleteObjectsRequest request = new DeleteObjectsRequest("bucketname");
request.setQuiet(false);
List<KeyAndVersion> toDelete = new ArrayList<KeyAndVersion>();
toDelete.add(new KeyAndVersion("objectname1", "versionid1"));
toDelete.add(new KeyAndVersion("objectname2", "versionid2"));
toDelete.add(new KeyAndVersion("objectname3", "versionid3"));
request.setKeyAndVersions(toDelete.toArray(new KeyAndVersion[toDelete.size()]));
DeleteObjectsResult result = obsClient.deleteObjects(request);

System.out.println("\t" + result.getDeletedObjectResults());
System.out.println("\t" + result.getErrorResults());

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

2020-02-26 93

12 Lifecycle Management

12.1 Lifecycle Management Overview
OBS allows you to set lifecycle rules for buckets to automatically transit the
storage class of an object and delete expired objects, so as to effectively use
storage features and optimize the storage space. You can set multiple lifecycle
rules based on the prefix. A lifecycle rule must contain:

● Rule ID, which uniquely identifies the rule
● Prefix of objects that are under the control of this rule
● Transition policy of an object of the latest version, which can be specified in

either mode:

a. How many days after the object is created
b. Transition date

● Expiration time of an object of the latest version, which can be specified in
either mode:

a. How many days after the object is created
b. Expiration date

● Transition policy of a noncurrent object version, which can be specified in the
following mode:
– How many days after the object becomes a noncurrent object version

● Expiration time of a noncurrent object version, which can be specified in the
following mode:
– How many days after the object becomes a noncurrent object version

● Identifier specifying whether the setting is effective

For more information, see Lifecycle Management.

Object Storage Service
Java SDK Developer Guide 12 Lifecycle Management

2020-02-26 94

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853659.html

● An object will be automatically deleted by the OBS server once it expires.
● The time set in the transition policy of an object must be earlier than its expiration time,

and the time set in the transition policy of a noncurrent object version must be earlier
than its expiration time.

● The configured expiration time and transition policy for a noncurrent object version will
take effect only when the versioning is enabled or suspended for a bucket.

12.2 Setting Lifecycle Rules
You can call ObsClient.setBucketLifecycle to set lifecycle rules for a bucket.

Setting an Object Transition Policy
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

LifecycleConfiguration config = new LifecycleConfiguration();
Rule rule = config.new Rule();
rule.setEnabled(true);
rule.setId("rule1");
rule.setPrefix("prefix");
Transition transition = config.new Transition();
// Specify that objects whose names contain the prefix will be transited 30 days after creation.
transition.setDays(30);
// Specify the storage class of the object after transition.
transition.setObjectStorageClass(StorageClassEnum.WARM);
// Specify a date when the objects whose names contain the prefix will be transited.
// transition.setDate(new SimpleDateFormat("yyyy-MM-dd").parse("2018-10-31"));
rule.getTransitions().add(transition);

NoncurrentVersionTransition noncurrentVersionTransition = config.new NoncurrentVersionTransition();
// Specify that objects whose names contain the prefix will be transited after changing into noncurrent
versions for 30 days.
noncurrentVersionTransition.setDays(30);
// Specify the storage class of the noncurrent object version after transition.
noncurrentVersionTransition.setObjectStorageClass(StorageClassEnum.COLD);
rule.getNoncurrentVersionTransitions().add(noncurrentVersionTransition);

config.addRule(rule);

obsClient.setBucketLifecycle("bucketname", config);

Setting an Object Expiration Time
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

LifecycleConfiguration config = new LifecycleConfiguration();

Rule rule = config.new Rule();

Object Storage Service
Java SDK Developer Guide 12 Lifecycle Management

2020-02-26 95

rule.setEnabled(true);
rule.setId("rule1");
rule.setPrefix("prefix");
Expiration expiration = config.new Expiration();
// Specify that objects whose names contain the prefix will expire 60 days after creation.
expiration.setDays(60);
// Specify a date when the objects whose names contain the prefix will expire.
// expiration.setDate(new SimpleDateFormat("yyyy-MM-dd").parse("2018-12-31"));
rule.setExpiration(expiration);

NoncurrentVersionExpiration noncurrentVersionExpiration = config.new NoncurrentVersionExpiration();
// Specify that objects whose names contain the prefix will expire after changing into noncurrent versions
for 60 days.
noncurrentVersionExpiration.setDays(60);
rule.setNoncurrentVersionExpiration(noncurrentVersionExpiration);
config.addRule(rule);

obsClient.setBucketLifecycle("bucketname", config);

12.3 Viewing Lifecycle Rules
You can call ObsClient.getBucketLifecycle to view lifecycle rules of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

LifecycleConfiguration config = obsClient.getBucketLifecycle("bucketname");

for (Rule rule : config.getRules())
{
 System.out.println(rule.getId());
 System.out.println(rule.getPrefix());
 for(Transition transition : rule.getTransitions()){
 System.out.println(transition.getDays());
 System.out.println(transition.getStorageClass());
 }
 System.out.println(rule.getExpiration() != null ? rule.getExpiration().getDays() : "");
 for(NoncurrentVersionTransition noncurrentVersionTransition : rule.getNoncurrentVersionTransitions()){
 System.out.println(noncurrentVersionTransition.getDays());
 System.out.println(noncurrentVersionTransition.getStorageClass());
 }
 System.out.println(rule.getNoncurrentVersionExpiration() != null ?
rule.getNoncurrentVersionExpiration().getDays() : "");
}

12.4 Deleting Lifecycle Rules
You can call ObsClient.deleteBucketLifecycle to delete lifecycle rules of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.deleteBucketLifecycle("bucketname");

Object Storage Service
Java SDK Developer Guide 12 Lifecycle Management

2020-02-26 96

13 CORS

13.1 CORS Overview
Cross-origin resource sharing (CORS) allows web application programs to access
resources in other domains. OBS provides developers with APIs for facilitating
cross-origin resource access.

For more information, see CORS.

13.2 Setting CORS Rules
You can call ObsClient.setBucketCors to set CORS rules for a bucket. If the
bucket is configured with CORS rules, the newly set ones will overwrite the
existing ones. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketCors cors = new BucketCors();

List<BucketCorsRule> rules = new ArrayList<BucketCorsRule>();
BucketCorsRule rule = new BucketCorsRule();

ArrayList<String> allowedOrigin = new ArrayList<String>();
// Specify the origin of the cross-origin request.
allowedOrigin.add("http://www.a.com");
allowedOrigin.add("http://www.b.com");
rule.setAllowedOrigin(allowedOrigin);

ArrayList<String> allowedMethod = new ArrayList<String>();
// Specify the request method, which can be GET, PUT, DELETE, POST, or HEAD.
allowedMethod.add("GET");
allowedMethod.add("HEAD");
allowedMethod.add("PUT");
rule.setAllowedMethod(allowedMethod);

ArrayList<String> allowedHeader = new ArrayList<String>();
// Specify whether headers specified in Access-Control-Request-Headers in the OPTIONS request can be
used.

Object Storage Service
Java SDK Developer Guide 13 CORS

2020-02-26 97

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853680.html

allowedHeader.add("x-obs-header");
rule.setAllowedHeader(allowedHeader);

ArrayList<String> exposeHeader = new ArrayList<String>();
// Specify response headers that users can access using application programs.
exposeHeader.add("x-obs-expose-header");
rule.setExposeHeader(exposeHeader);

// Specify the browser's cache time of the returned results of OPTIONS requests for specific resources, in
seconds.
rule.setMaxAgeSecond(10);
rules.add(rule);
cors.setRules(rules);

obsClient.setBucketCors("bucketname", cors);

AllowedOrigins and AllowedHeaders respectively can contain up to one wildcard
character (*). The wildcard character (*) indicates that all origins or headers are allowed.

13.3 Viewing CORS Rules
You can call ObsClient.getBucketCors to view CORS rules of a bucket. Sample
code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketCors cors = obsClient.getBucketCors("bucketname");
for(BucketCorsRule rule : cors.getRules()){
 System.out.println("\t" + rule.getId());
 System.out.println("\t" + rule.getMaxAgeSecond());
 System.out.println("\t" + rule.getAllowedHeader());
 System.out.println("\t" + rule.getAllowedOrigin());
 System.out.println("\t" + rule.getAllowedMethod());
 System.out.println("\t" + rule.getExposeHeader());
}

13.4 Deleting CORS Rules
You can call ObsClient.deleteBucketCors to delete CORS rules of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.deleteBucketCors("bucketname");

Object Storage Service
Java SDK Developer Guide 13 CORS

2020-02-26 98

14 Access Logging

14.1 Logging Overview
OBS allows you to configure access logging for buckets. After the configuration,
access to buckets will be recorded in the format of logs. These logs will be saved
in specific buckets in OBS.

For more information, see Logging.

14.2 Enabling Bucket Logging
You can call ObsClient.setBucketLogging to enable bucket logging.

NO TICE

The source bucket and target bucket of logging must be in the same region.

If the bucket is in the OBS Warm or Cold storage class, it cannot be used as the target
bucket.

Enabling Bucket Logging
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketLoggingConfiguration config = new BucketLoggingConfiguration();
config.setAgency("your agency");
config.setTargetBucketName("targetbucketname");
config.setLogfilePrefix("targetprefix");

obsClient.setBucketLogging("bucketname", config);

Object Storage Service
Java SDK Developer Guide 14 Access Logging

2020-02-26 99

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853553.html

Setting ACLs for Objects to Be Logged
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

String targetBucket = "targetbucketname";

// Configure logging.
BucketLoggingConfiguration config = new BucketLoggingConfiguration();
config.setAgency("your agency");
config.setTargetBucketName(targetBucket);
config.setLogfilePrefix("prefix");

// Grant the READ permission on the objects to be logged to all users.
GrantAndPermission grant1 = new GrantAndPermission(GroupGrantee.ALL_USERS,
Permission.PERMISSION_READ);
config.setTargetGrants(new GrantAndPermission[]{grant1});

obsClient.setBucketLogging("bucketname", config);

14.3 Viewing Bucket Logging
You can call ObsClient.getBucketLogging to view the logging settings of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketLoggingConfiguration config = obsClient.getBucketLogging("bucketname");
System.out.println("\t" + config.getTargetBucketName());
System.out.println("\t" + config.getLogfilePrefix());

14.4 Disabling Bucket Logging
You can call ObsClient.setBucketLogging to clear logging settings of a bucket so
as to disable logging of the bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Leave the logging settings in blank.
obsClient.setBucketLogging("bucketname", new BucketLoggingConfiguration());

Object Storage Service
Java SDK Developer Guide 14 Access Logging

2020-02-26 100

15 Static Website Hosting

15.1 Static Website Hosting Overview
You can upload the content files of the static website to your bucket in OBS as
objects and configure the public-read permission on the files, and then configure
the static website hosting mode for your bucket to host your static websites in
OBS. After this, when third-party users access your websites, they actually access
the objects in your bucket in OBS. When using static website hosting, you can
configure request redirection to redirect specific or all requests.

For more information, see Static Website Hosting.

15.2 Website File Hosting
You can perform the following to implement website file hosting:

Step 1 Upload a website file to your bucket in OBS as an object and set the MIME type
for the object.

Step 2 Set the ACL of the object to public-read.

Step 3 Access the object using a browser.

----End

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload objects and set the MIME type for the objects.
PutObjectRequest request = new PutObjectRequest();
request.setBucketName("bucketname");
request.setObjectKey("test.html");
request.setFile(new File("localfile.html"));
ObjectMetadata metadata = new ObjectMetadata();
metadata.setContentType("text/html");

Object Storage Service
Java SDK Developer Guide 15 Static Website Hosting

2020-02-26 101

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0066036537.html

request.setMetadata(metadata);
obsClient.putObject(request);

// Set the object ACL to public-read.
obsClient.setObjectAcl("bucketname", "test.html", AccessControlList.REST_CANNED_PUBLIC_READ);

You can use https://bucketname.your-endpoint/test.html in a browser to access files
hosted using the sample code.

15.3 Setting Website Hosting
You can call ObsClient.setBucketWebsite to set website hosting for a bucket.

Configuring the Default Homepage and Error Pages

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

WebsiteConfiguration config = new WebsiteConfiguration();
// Configure the default homepage.
config.setSuffix("index.html");
// Configure the error pages.
config.setKey("error.html");
obsClient.setBucketWebsite("bucketname", config);

Configuring the Redirection Rules

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

WebsiteConfiguration config = new WebsiteConfiguration();
// Configure the default homepage.
config.setSuffix("index.html");
// Configure the error pages.
config.setKey("error.html");

RouteRule rule = new RouteRule();
Redirect r = new Redirect();
r.setHostName("www.example.com");
r.setHttpRedirectCode("305");
r.setRedirectProtocol(ProtocolEnum.HTTP);
r.setReplaceKeyPrefixWith("replacekeyprefix");
rule.setRedirect(r);
RouteRuleCondition condition = new RouteRuleCondition();
condition.setHttpErrorCodeReturnedEquals("404");
condition.setKeyPrefixEquals("keyprefix");
rule.setCondition(condition);
config.getRouteRules().add(rule);

obsClient.setBucketWebsite("bucketname", config);

Object Storage Service
Java SDK Developer Guide 15 Static Website Hosting

2020-02-26 102

Configuring Redirection for All Requests
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

WebsiteConfiguration config = new WebsiteConfiguration();
RedirectAllRequest redirectAll = new RedirectAllRequest();
redirectAll.setHostName("www.example.com");
redirectAll.setRedirectProtocol(ProtocalEnum.HTTP);
config.setRedirectAllRequestsTo(redirectAll);

obsClient.setBucketWebsite("bucketname", config);

15.4 Viewing Website Hosting Settings
You can call ObsClient.getBucketWebsite to view the hosting settings of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

WebsiteConfiguration config = obsClient.getBucketWebsite("bucketname");
System.out.println("\t" + config.getKey());
System.out.println("\t" + config.getSuffix());
for(RouteRule rule : config.getRouteRules()){
 System.out.println("\t" +rule);
}

15.5 Deleting Website Hosting Settings
You can call ObsClient.deleteBucketWebsite to delete the hosting settings of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.deleteBucketWebsite("bucketname");

Object Storage Service
Java SDK Developer Guide 15 Static Website Hosting

2020-02-26 103

16 Event Notification

16.1 Event Notification Overview
The event notification function allows users to be notified of their operations on
buckets, ensuring users know events happened on buckets in a timely manner.
Currently, OBS supports event notifications through Simple Message Notification
(SMN).

For more information, see Event Notification.

16.2 Setting Event Notification
You can call ObsClient.setBucketNotification to set event notification for a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
BucketNotificationConfiguration bucketNotificationConfig = new BucketNotificationConfiguration();

TopicConfiguration topicConfig = new TopicConfiguration();
topicConfig.setId("id1");
topicConfig.setTopic("your topic");
topicConfig.getEventTypes().add(EventTypeEnum.OBJECT_CREATED_ALL);
Filter topicFilter = new Filter();
topicFilter.getFilterRules().add(new FilterRule("prefix", "smn"));
topicFilter.getFilterRules().add(new FilterRule("suffix", ".jpg"));
topicConfig.setFilter(topicFilter);
bucketNotificationConfig.addTopicConfiguration(topicConfig);

obsClient.setBucketNotification("bucketname", bucketNotificationConfig);

16.3 Viewing Event Notification Settings
You can call ObsClient.getBucketNotification to view event notification settings
of a bucket. Sample code is as follows:

Object Storage Service
Java SDK Developer Guide 16 Event Notification

2020-02-26 104

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853816.html

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketNotificationConfiguration config = obsClient.getBucketNotification("bucketname");

System.out.println(config);

16.4 Disabling Event Notification
To disable event notification on buckets is to call
ObsClient.setBucketNotification to clear all event notification settings. Sample
code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.setBucketNotification("bucketname", new BucketNotificationConfiguration());

Object Storage Service
Java SDK Developer Guide 16 Event Notification

2020-02-26 105

17 Troubleshooting

17.1 HTTP Status Codes
The OBS server complies with the HTTP standard. After an API is called, the OBS
server returns a standard HTTP status code. The following tables list the categories
of HTTP status codes and the common HTTP status codes in OBS.

● Categories of HTTP status codes

Category Description

1XX Informational response. A request is received by the
server and the server requires the requester to
continue the operation. This category is usually
invisible to the client.

2XX Success. The operation is received and processed
successfully.

3XX Redirection. Further operations to complete the
request are required. This category is usually invisible
to the client.

4XX Client errors. The request contains a syntax error, or
the request cannot be implemented.

5XX Server errors. An error occurs when the server is
processing the request.

● Common HTTP status codes in OBS and their meanings

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 106

HTTP Status
Code

Description Possible Cause

400 Bad
Request

The request parameter
is incorrect.

● Invalid request parameter.
● The consistency check fails

after the client request
carries MD5.

● An invalid parameter is
transferred when the SDK is
used.

● An invalid bucket name is
used.

403 Forbidden The access is denied. ● The signature carried in the
request header does not
match with the signature
calculated by the OBS
server. Generally, the error is
caused by incorrect AK/SK.

● The account does not have
the permission to access the
requested resource.

● The account is in arrears.
● The bucket space is

insufficient when a quota is
set for the bucket.

● Invalid AK
● The time difference

between the client and the
server is too large. That is,
the time of the server
where the client is located is
not synchronized with the
time of the NTP service.

404 Not Found The requested resource
does not exist.

● The bucket does not exist.
● The object does not exist.
● The bucket policy

configuration does not exist.
For example, the bucket
CORS configuration or
bucket policy configuration
does not exist.

● The multipart upload does
not exist.

405 Method
Not Allowed

The request method is
not supported.

The requested method or
feature is not supported in the
region where the bucket
resides.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 107

HTTP Status
Code

Description Possible Cause

408 Request
Timeout

Request timed out. The Socket connection
between the server and client
timed out.

409 Conflict Request conflicts occur. ● Buckets of the same name
are created in different
regions.

● Deletion of a non-empty
bucket is attempted.

500 Internal
Server Error

An internal error occurs
on the server side.

An internal error occurs on the
server side.

503 Service
Unavailable

The service is
unavailable.

The server cannot be accessed
temporarily.

17.2 OBS Server-Side Error Codes
If the OBS server encounters an error when processing a request, a response
containing the error code and error description is returned. The following table
lists details about each error code and HTTP status code.

HTTP Status
Code

Error Code Error Message Solution

301 Moved
Permanently

PermanentRedirec
t

The requested
bucket can be
accessed only
through the
specified address.
Send subsequent
requests to the
address.

Send the request
to the returned
redirection
address.

301 Moved
Permanently

WebsiteRedirect The website
request lacks
bucketName.

Put the bucket
name in the
request and try
again.

307 Moved
Temporarily

TemporaryRedirec
t

Temporary
redirection. If the
DNS is updated,
the request is
redirected to the
bucket.

The system
automatically
redirects the
request or sends
the request to the
redirection
address.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 108

HTTP Status
Code

Error Code Error Message Solution

400 Bad Request BadDigest The specified
value of Content-
MD5 does not
match the value
received by OBS.

Check whether
the MD5 value
carried in the
header is the
same as that
calculated by the
message body.

400 Bad Request BadDomainName Invalid domain
name.

Use a valid
domain name.

400 Bad Request BadRequest Invalid request
parameter.

Modify the
parameter
according to the
error details
returned in the
message body.

400 Bad Request CustomDomainAr
eadyExist

The configured
domain already
exists.

It has been
configured and
does not need to
be configured
again.

400 Bad Request CustomDomainNo
tExist

The domain to be
deleted does not
exist.

The domain is not
configured or has
been deleted. You
do not need to
delete it.

400 Bad Request EntityTooLarge The size of the
object uploaded
using the POST
method exceeds
the upper limit.

Modify the
conditions
specified in the
policy when
posting the object
or reduce the
object size.

400 Bad Request EntityTooSmall The size of the
object uploaded
using the POST
method does not
reach the lower
limit.

Modify the
conditions
specified in the
policy when
posting the object
or increase the
object size.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 109

HTTP Status
Code

Error Code Error Message Solution

400 Bad Request IllegalLocation-
ConstraintExcep-
tion

A request without
Location is sent
for creating a
bucket in a non-
default region.

Send the bucket
creation request
to the default
region, or send
the request with
the Location of
the non-default
region.

400 Bad Request IncompleteBody No complete
request body is
received due to
network or other
problems.

Upload the object
again.

400 Bad Request IncorrectNumber-
OfFilesInPost
Request

Each POST
request must
contain one file to
be uploaded.

Carry a file to be
uploaded.

400 Bad Request InvalidArgument Invalid parameter. Modify the
parameter
according to the
error details in
the message body.

400 Bad Request InvalidBucket The bucket to be
accessed does not
exist.

Try another
bucket name.

400 Bad Request InvalidBucketNam
e

The bucket name
specified in the
request is invalid,
which may have
exceeded the
maximum length,
or contain special
characters that
are not allowed.

Try another
bucket name.

400 Bad Request InvalidLocation-
Constraint

The specified
Location in the
bucket creation
request is invalid
or does not exist.

Correct the
Location in the
bucket creation
request.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 110

HTTP Status
Code

Error Code Error Message Solution

400 Bad Request InvalidPart One or more
specified parts are
not found. The
parts may not be
uploaded or the
specified entity
tags (ETags) do
not match the
parts' ETags.

Merge the parts
correctly
according to the
ETags.

400 Bad Request InvalidPartOrder Parts are not
listed in ascending
order by part
number.

Sort the parts in
ascending order
and merge them
again.

400 Bad Request InvalidPolicyDocu-
ment

The content of
the form does not
meet the
conditions
specified in the
policy document.

Modify the policy
in the constructed
form according to
the error details
in the message
body and try
again.

400 Bad Request InvalidRedirectLo-
cation

Invalid redirect
location.

Specify the correct
IP address.

400 Bad Request InvalidRequest Invalid request. Modify the
parameter
according to the
error details
returned in the
message body.

400 Bad Request InvalidRequestBod
y

The request body
is invalid. The
request requires a
message body but
no message body
is uploaded.

Upload the
message body in
the correct
format.

400 Bad Request InvalidTargetBuck-
etForLogging

The delivery
group has no ACL
permission for the
target bucket.

Configure the
target bucket ACL
and try again.

400 Bad Request KeyTooLongError The provided key
is too long.

Use a shorter key.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 111

HTTP Status
Code

Error Code Error Message Solution

400 Bad Request MalformedACLErr
or

The provided XML
file is in an
incorrect format
or does not meet
format
requirements.

Use the correct
XML format to
retry.

400 Bad Request MalformedError The XML format
in the request is
incorrect.

Use the correct
XML format to
retry.

400 Bad Request MalformedLoggin
gStatus

The XML format
of Logging is
incorrect.

Use the correct
XML format to
retry.

400 Bad Request MalformedPolicy The bucket policy
failed the check.

Modify the bucket
policy according
to the error
details returned in
the message body.

400 Bad Request MalformedQuota
Error

The Quota XML
format is
incorrect.

Use the correct
XML format to
retry.

400 Bad Request MalformedXML An XML file of a
configuration
item is in
incorrect format.

Use the correct
XML format to
retry.

400 Bad Request MaxMessageLeng
thExceeded

Copying an object
does not require a
message body in
the request.

Remove the
message body
and retry.

400 Bad Request MetadataTooLarg
e

The size of the
metadata header
has exceeded the
upper limit.

Reduce the size of
the metadata
header.

400 Bad Request MissingRegion No region
contained in the
request and no
default region
defined in the
system.

Carry the region
information in the
request.

400 Bad Request MissingRequestBo
dyError

An empty XML
file is sent as a
request.

Provide the
correct XML file.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 112

HTTP Status
Code

Error Code Error Message Solution

400 Bad Request MissingRequired-
Header

A required header
is missing in the
request.

Provide the
required header.

400 Bad Request MissingSecurity-
Header

A required header
is missing in the
request.

Provide the
required header.

400 Bad Request TooManyBuckets You have
attempted to
create more
buckets than
allowed.

Delete some
buckets and try
again.

400 Bad Request TooManyCustomD
omains

Too many user
accounts are
configured.

Delete some user
accounts and try
again.

400 Bad Request TooManyWrongSi
gnature

The request is
rejected due to
high-frequency
errors.

Replace AK and
try again.

400 Bad Request UnexpectedConte
nt

The request
requires a
message body
which is not
carried by the
client, or the
request does not
require a message
body but the
client carries the
message body.

Try again
according to the
instruction.

400 Bad Request UserKeyMustBeSp
ecified

This operation is
only available to
special users.

Contact the
technical support.

403 Forbidden AccessDenied Access denied,
because the
request does not
carry a date
header or the
header format is
incorrect.

Provide a correct
date header in the
request.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 113

HTTP Status
Code

Error Code Error Message Solution

403 Forbidden AccessForbidden Insufficient
permission. No
CORS rule is
configured for the
bucket or the
CORS rule does
not match.

Modify the CORS
configuration of
the bucket or
send the matched
OPTIONS request
based on the
CORS
configuration of
the bucket.

403 Forbidden AllAccessDisabled You have no
permission to
perform the
operation. The
bucket name is
forbidden.

Change the
bucket name.

403 Forbidden DeregisterUserId The user has been
deregistered.

Top up or re-
register.

403 Forbidden InArrearOrInsuffi-
cientBalance

The subscriber
owes fees or the
account balance is
insufficient, and
the subscriber
does not have the
permission to
perform an
operation.

Top up the
account.

403 Forbidden InsufficientStora-
geSpace

Insufficient
storage space.

If the quota is
exceeded, increase
quota or delete
some objects.

403 Forbidden InvalidAccessKeyI
d

The access key ID
provided by the
customer does
not exist in the
system.

Provide correct
access key ID.

403 Forbidden NotSignedUp Your account has
not been
registered with
the system. Only
a registered
account can be
used.

Register OBS.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 114

HTTP Status
Code

Error Code Error Message Solution

403 Forbidden RequestTimeTooS
kewed

The request time
and the server's
time differ a lot.

Check whether
the difference
between the
client time and
the current time is
too large.

403 Forbidden SignatureDoesNot
Match

The provided
signature in the
request does not
match the
signature
calculated by
OBS.

Check your secret
access key and
signature
calculation
method.

403 Forbidden Unauthorized You have not
been
authenticated in
real name.

Authenticate your
real name and try
again.

404 Not Found NoSuchBucket The specified
bucket does not
exist.

Create a bucket
and perform the
operation again.

404 Not Found NoSuchBucketPoli
cy

No bucket policy
exists.

Configure a
bucket policy.

404 Not Found NoSuchCORSConfi
guration

No CORS
configuration
exists.

Configure CORS
first.

404 Not Found NoSuchCustomDo
main

The requested
user domain does
not exist.

Set a user domain
first.

404 Not Found NoSuchKey The specified key
does not exist.

Upload the object
first.

404 Not Found NoSuchLifecycle-
Configuration

The requested
lifecycle rule does
not exist.

Configure a
lifecycle rule first.

404 Not Found NoSuchUpload The specified
multipart upload
does not exist.
The upload ID
does not exist or
the multipart
upload job has
been aborted or
completed.

Use the existing
part or reinitialize
the part.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 115

HTTP Status
Code

Error Code Error Message Solution

404 Not Found NoSuchVersion The specified
version ID does
not match any
existing version.

Use a correct
version ID.

404 Not Found NoSuchWebsiteCo
nfiguration

The requested
website does not
exist.

Configure the
website first.

405 Method Not
Allowed

MethodNotAllowe
d

The specified
method is not
allowed against
the requested
resource.

The method is not
allowed.

408 Request
Timeout

RequestTimeout No read or write
operation has
been performed
within the
timeout period of
the socket
connection
between the user
and the server.

Check the
network and try
again, or contact
technical support.

409 Conflict BucketAlreadyEx-
ists

The requested
bucket name
already exists. The
bucket
namespace is
shared by all
users of OBS.
Select another
name and retry.

Try another
bucket name.

409 Conflict BucketAlreadyOw
nedByYou

Your previous
request for
creating the
named bucket
succeeded and
you already own
it.

You do not need
to create the
bucket again.

409 Conflict BucketNotEmpty The bucket that
you tried to delete
is not empty.

Delete the objects
in the bucket and
then delete the
bucket.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 116

HTTP Status
Code

Error Code Error Message Solution

409 Conflict OperationAborted A conflicting
operation is being
performed on this
resource. Retry
later.

Try again later.

409 Conflict ServiceNotSuppor
ted

The request
method is not
supported by the
server.

Not supported by
the server.
Contact technical
support.

411 Length
Required

MissingContentLe
ngth

The HTTP header
Content-Length is
not provided.

Provide the
Content-Length
header.

412 Precondition
Failed

PreconditionFailed At least one of
the specified
preconditions is
not met.

Modify according
to the condition
prompt in the
returned message
body.

416 Client
Requested Range
Not Satisfiable

InvalidRange The requested
range cannot be
obtained.

Retry with the
correct range.

500 Internal
Server Error

InternalError An internal error
occurs. Retry later.

Contact the
technical support.

501 Not
Implemented

ServiceNotImple-
mented

The request
method is not
implemented by
the server.

Not supported
currently. Contact
the technical
support.

503 Service
Unavailable

ServiceUnavaila-
ble

The server is
overloaded or has
internal errors.

Try again later or
contact the
technical support.

503 Service
Unavailable

SlowDown Too frequent
requests. Reduce
your request
frequency.

Reduce your
request frequency.

17.3 SDK Custom Exceptions
SDK custom exceptions (ObsException), thrown by ObsClient, are inherited from
class java.lang.RuntimeException. Exceptions are usually OBS server errors,
including OBS error codes and error information. This facilitates users to locate
problems and troubleshot faults.

ObsException contains the following error information:

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 117

● ObsException.getResponseCode: HTTP status code
● ObsException.getErrorCode: Error code returned by the OBS server
● ObsException.getErrorMessage: Error description returned by the OBS server
● ObsException.getErrorRequestId: Request ID returned by the OBS server
● ObsException.getErrorHostId: Requested server ID
● ObsException.getResponseHeaders: HTTP response headers

17.4 SDK Common Response Headers
After you call an API in an instance of ObsClient, an instance of the
HeaderResponse class (or its sub-class) will be returned. It contains information
about HTTP/HTTPS response headers.

Sample code for processing public response headers:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
HeaderResponse response = obsClient.createBucket("bucketname");

// Obtain the UUID from the public response headers.
System.out.println("\t" + response.getRequestId());

obsClient.close();

17.5 Log Analysis

How To Enable Logging
1. Save the log4j2.xml file obtained from the OBS Java SDK package to the

classpath root directory.
2. Call Log4j2Configurator.setLogConfig to specify the save path of log4j2.xml

directly.

You can obtain the default log configuration file log4j2.xml from the OBS Java SDK
package, and then modify to customize the file.

Log Path

The log path of OBS Java SDK is specified in log4j2.xml. Logs are saved in the
path represented by system variable user.dir of JDK by default. In general, there
are three logs files as follows:

File Name Description

OBS-
SDK.interface_nor
th.log

Northbound log file, which saves the logs about the
communication between OBS Java SDK and third-party
applications of users.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 118

File Name Description

OBS-
SDK.interface_sou
th.log

Southbound log file, which saves the logs about the
communication between OBS Java SDK and the OBS server.

OBS-
SDK.access.log

Run log file of the OBS server.

Log Format
The SDK log format is: Log time|Thread number|Log level|Log content. The
following are example logs:

#Southbound logs
2017-08-21 17:40:07 133|main|INFO |HttpClient cost 157 ms to apply http request
2017-08-21 17:40:07 133|main|INFO |Received expected response code: true
2017-08-21 17:40:07 133|main|INFO |expected code(s): [200, 204].

#Northbound logs
2017-08-21 17:40:06 820|main|INFO |Storage|1|HTTP+XML|ObsClient||||2017-08-21 17:40:05|2017-08-21
17:40:06|||0|
2017-08-21 17:40:07 136|main|INFO |Storage|1|HTTP+XML|setObjectAcl||||2017-08-21 17:40:06|2017-08-21
17:40:07|||0|
2017-08-21 17:40:07 137|main|INFO |ObsClient [setObjectAcl] cost 312 ms

Log Level
When current logs cannot be used to troubleshoot system faults, you can change
the log level to obtain more information. You can obtain the most information in
TRACE logs and the least information in ERROR logs.

Log level description:

● OFF: Close level. If this level is set, logging will be disabled.
● TRACE: Trace level. If this level is set, all log information will be printed. This

level is not recommended.
● DEBUG: Debugging level. If this level is set, information about logs of the

INFO level and above, HTTP/HTTPS request and response headers, and
StringToSign information calculated by authentication algorithm will be
printed.

● INFO: Information level. If this level is set, information about logs of the
WARN level and above, time consumed for each HTTP/HTTPS request, and
time consumed for calling the ObsClient API will be printed.

● WARN: Warning level. If this level is set, information about logs of the
ERROR level and above, as well as information about some critical events (for
example, the number of retry attempts exceeds the upper limit) will be
printed.

● ERROR: Error level. If this level is set, only error information will be printed.

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 119

How to Set
The following sample code shows how to set different levels for the southbound
logs, northbound logs, and OBS server run logs. (For details about log
configuration, see configuration file log4j2.xml.)

<!-- north log -->
<Logger name="com.obs.services.ObsClient" level="INFO" additivity="false">
 <AppenderRef ref="NorthInterfaceLogAppender" />
</Logger>

<!-- south log -->
<Logger name="com.obs.services.internal.RestStorageService" level="WARN" additivity="false">
 <AppenderRef ref="SouthInterfaceLogAppender" />
</Logger>

<!-- access log -->
<Logger name="com.obs.log.AccessLogger" level="ERROR" additivity="false">
 <AppenderRef ref="AccessLogAppender" />
</Logger>

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

2020-02-26 120

18 FAQs

18.1 How Can I Create a Folder?
To create a folder in an OBS bucket is to create an object whose size is 0 and
whose name ends with a slash (/). For details, see Creating a Folder.

18.2 How Can I List All Objects in a Bucket?
For details, see Listing Objects and Listing Versioning Objects.

18.3 How Can I Use a URL for Authorized Access?
See 10.1 Using a URL for Authorized Access.

18.4 How Can I Upload an Object in Browser-Based
Mode?

For details, see Performing a Browser-Based Upload.

18.5 How Can I Download a Large Object in Multipart
Mode?

For details, see Performing a Partial Download.

18.6 What Can I Do to Implement Server-Side Root
Certificate Verification?

For details, see Configuring Server-Side Certificate Verification.

Object Storage Service
Java SDK Developer Guide 18 FAQs

2020-02-26 121

18.7 How Can I Set an Object to Be Accessible to
Anonymous Users?

To enable anonymous users to access an object, perform the following steps:

Step 1 Set the object access permission to public-read by referring to 9.2 Managing
Object ACLs.

Step 2 Obtain the URL of the object by referring to 18.11 How Do I Obtain the Object
URL? and provide it to anonymous users.

Step 3 An anonymous user can access the object by entering the URL on a browser.

----End

18.8 How Can I Identify the Endpoint and Region of
OBS?

For details, see Obtaining Endpoints.

18.9 What Is the Retry Mechanism of SDK?
SDK uses the maxErrorRetry parameter configured in 4.3 Configuring an
Instance of ObsClient to retry. The default value for retry times is 3. A value
ranges from 0 to 5 is recommended. If the network connection is abnormal or the
server returns the 5XX error when an ObsClient API is called, the SDK performs an
exponential backoff retry.

NO TICE

● For ObsClient.putObject, when the data source is an InputStream other than
FileInputStream, the SDK does not retry when an I/O exception occurs because
the data stream cannot be read back. The upper-layer application needs to
retry.

● When ObsClient.getObject is successfully called and ObsObject is returned,
the SDK does not retry when an I/O exception occurs during data reading from
ObsObject.getObjectContent because this situation is beyond the scope of the
processing logic of the SDK. The upper-layer application needs to retry.

18.10 How Do I Obtain the Static Website Access
Address of a Bucket?

After a bucket is configured to work in static website hosting mode, you can use
the following method to combine the static website access address of the bucket.

https://bucket name.static website hosting domain name

Object Storage Service
Java SDK Developer Guide 18 FAQs

2020-02-26 122

● You can click here to view the static website hosting domain names in each region.

18.11 How Do I Obtain the Object URL?
If the uploaded object is set to be read by anonymous users, anonymous users can
download the object through the object URL directly. Methods to obtain the object
URL are as follows:

Method 1: Query by calling the API. After an object is uploaded using the
ObsClient API, PutObjectResult is returned. You can call getObjectUrl to obtain
the URL of the uploaded object. The sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Call putObject to upload the object and obtain the return result.
PutObjectResult result = obsClient.putObject("bucketname", "objectname", new File("localfile"));
// Read the URL of the uploaded object.
System.out.println("\t" + result.getObjectUrl());

Method 2: Compose the URL in the format of https://Bucket name.Domain name/
Directory level/Object name.

● If the object resides in the root directory of a bucket, its URL does not contain a
directory level.

● You can click here to view the domain names of each region.

18.12 How to Improve the Speed of Uploading Large
Files over the Public Network?

If the size of a file exceeds 100 MB, you are advised to upload the file using
multipart upload over the public network. Multipart upload allows uploading a
single object as parts separately. Each part is a part of consecutive object data. You
can upload parts in any sequence. A part can be reloaded after an upload failure,
without affecting other parts. Uploading multiple parts of an object using multiple
threads concurrently can greatly improve the transmission efficiency.

For details about the code example, see 7.7 Performing a Multipart Upload.

18.13 How Do I Stop an Ongoing Upload Task?
The SDK does not support this feature and secondary development is required. You
can stop an ongoing upload task by stopping the data flow and capturing
exceptions.

Object Storage Service
Java SDK Developer Guide 18 FAQs

2020-02-26 123

https://support.hc.sbercloud.ru/en-us/endpoint/index.html
https://support.hc.sbercloud.ru/en-us/endpoint/index.html

18.14 How Can I Perform a Multipart Upload?
In a multipart upload, you can specify a part of the file to be uploaded by
performing the following steps:

Step 1 You need to initialize an instance of ObsClient by using AK, SK, and endpoint.

Step 2 Specify the bucket name and object name to initialize
InitiateMultipartUploadRequest. Call
InitiateMultipartUploadRequest.setMetadata to set the metadata of the object
to be uploaded. Then, call ObsClient.initiateMultipartUpload to initialize a
multipart upload task. A globally unique identifier (upload ID) is returned to
identify this task.

Step 3 Specify the bucket name and object name to initialize UploadPartRequest. Call
UploadPartRequest.setUploadId to set the upload ID to which the part to be
uploaded belongs; call setPartNumber to set the part number of the part; call
setFile to set the large file to which the part belongs; call setPartSize to set the
part size; and then call ObsClient.uploadPart to upload the part. The ETag value
of the uploaded part is returned.

Step 4 After all parts are uploaded, specify the bucket name, object name, uploadId, and
partEtags to initialize a CompleteMultipartUploadRequest request. Then, call
ObsClient.completeMultipartUpload to merge parts.

----End

For details, see 7.7 Performing a Multipart Upload.

18.15 How Can I Perform a Download in Multipart
Mode?

In a multipart download, you can specify the range of data to be downloaded. The
procedure is as follows:

Step 1 You need to initialize an instance of ObsClient by using AK, SK, and endpoint.

Step 2 Specify the bucket name and object name to initialize GetObjectRequest. Call
GetObjectRequest.setRangeStart and GetObjectRequest.setRangeEnd to set
the start and end points of the object data to be downloaded.

Step 3 Call ObsClient.getObject to send the GetObjectRequest request in step 2 to
download the data in multipart mode.

----End

For details, see 8.3 Performing a Partial Download.

18.16 How Can I Obtain the AK and SK?
Step 1 Log in to OBS Console. In the upper right corner of the page, hover the cursor

over the username and click My Credentials.

Object Storage Service
Java SDK Developer Guide 18 FAQs

2020-02-26 124

Step 2 On the My Credentials page, select Access Keys in the navigation pane on the
left.

Step 3 On the Access Keys page, click Create Access Key.

Step 4 In the Create Access Key dialog box that is displayed, enter the password and
verification code.

Step 5 Click OK.

Step 6 In the Download Access Key dialog box that is displayed, click OK to save the
access keys to your browser's default download path.

Step 7 Open the downloaded credentials.csv file to obtain the access keys (AK and SK).

----End

For information, see 3.2 Creating Access Keys.

18.17 How Do I Confirm That the Uploaded Object Has
Overwritten the Existing Object in the Bucket with the
Same Name?

After the upload is complete, you can call ObsClient.getObjectMetadata to
obtain the size and last modification time of the target object and compare them
with those in the data source. If the sizes are the same and the last modification
time of the target object is later than that of the data source, the upload is
successful. Otherwise, the upload fails. For details about
ObsClient.getObjectMetadata, see 9.1 Obtaining Object Properties.

18.18 Does the SDK Support Uploading, Downloading,
or Copying Objects in a Batch?

No.

Currently, the SDK does not provide such APIs. You need to encapsulate the service
codes for uploading, downloading, or copying objects in a batch by yourself. The
procedure is as follows:

Step 1 List all objects to be uploaded, downloaded, or copied. For details about how to
list objects to be downloaded, see 9.3 Listing Objects.

Step 2 Call the API for uploading, downloading, or copying a single object for the listed
objects.

----End

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
final String bucketName = "bucketname";
// Define the prefix of objects in a bucket.

Object Storage Service
Java SDK Developer Guide 18 FAQs

2020-02-26 125

final String objectPre = "object/";
// Folder to be uploaded
final String localDirPath = "localDirPath";
final List<File> list = new ArrayList<>();
// Scan all objects in the folder.
static void listFiles(File file){
 File[] fs = file.listFiles();
 assert fs != null;
 if (fs.length < 1){
 // If an empty folder needs to be uploaded, add it to the list.
 list.add(file);
 }else{
 for (File f:fs){
 if (f.isDirectory()){
 listFiles(f);
 }
 if (f.isFile()){
 // Add objects to be uploaded to the list.
 list.add(f);
 }
 }
 }
}
// Traverse the folder to be uploaded and obtain all objects to be uploaded.
File file = new File(localDirPath);
listFiles(file);

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Initialize the thread pool.
ExecutorService executorService = Executors.newFixedThreadPool(20);

// Concurrently upload parts.
for (File f:list){
 executorService.execute(() -> {
 if (f.isDirectory()){
 // For empty folders, create empty folder objects in the bucket.
 String remoteObjectKey = objectPre + f.getPath().substring(localDirPath.length() + 1) + "/";
 obsClient.putObject(bucketName, remoteObjectKey, new ByteArrayInputStream(new byte[0]));
 }else{
 String remoteObjectKey = objectPre + f.getPath().substring(localDirPath.length() + 1);
 obsClient.putObject(bucketName, remoteObjectKey, new File(f.getPath()));
 }
 });
}

// Wait until the upload is complete.
executorService.shutdown();
while (!executorService.isTerminated())
{
 try
 {
 executorService.awaitTermination(5, TimeUnit.SECONDS);
 }
 catch (InterruptedException e)
 {
 e.printStackTrace();
 }
}
// Close obsClient.
try {
 obsClient.close();
} catch (IOException e) {
 e.printStackTrace();
}

Object Storage Service
Java SDK Developer Guide 18 FAQs

2020-02-26 126

You can use multiple threads to concurrently upload, download, and copy data to improve
efficiency.

Object Storage Service
Java SDK Developer Guide 18 FAQs

2020-02-26 127

A API Reference

For details about all parameters and definitions of APIs in the OBS Java SDK, see
the Object Storage Service Java SDK API Reference.

Object Storage Service
Java SDK Developer Guide A API Reference

2020-02-26 128

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/apidoc/en/java/index.html

B Change History

Release Date What's New

2020-02-26 This is the first official release.

Object Storage Service
Java SDK Developer Guide B Change History

2020-02-26 129

	Contents
	1 SDK Download Links
	2 Example Programs
	3 Quick Start
	3.1 Before You Start
	3.2 Creating Access Keys
	3.3 Preparing a Development Environment
	3.4 Installing the SDK
	3.5 Obtaining Endpoints
	3.6 Initializing an Instance of ObsClient
	3.7 Creating a Bucket
	3.8 Uploading an Object
	3.9 Downloading an Object
	3.10 Listing Objects
	3.11 Deleting an Object
	3.12 General Examples of ObsClient

	4 Initialization
	4.1 Configuring the AK and SK
	4.2 Creating an Instance of ObsClient
	4.3 Configuring an Instance of ObsClient
	4.4 Configuring SDK Logging
	4.5 Configuring Server-Side Certificate Verification
	4.6 Transparently Transferring the AK and SK

	5 Fault Locating
	5.1 Methods
	5.2 Notable Issues

	6 Bucket Management
	6.1 Creating a Bucket
	6.2 Listing Buckets
	6.3 Deleting a Bucket
	6.4 Identifying Whether a Bucket Exists
	6.5 Obtaining Bucket Metadata
	6.6 Managing Bucket ACLs
	6.7 Managing Bucket Policies
	6.8 Obtaining a Bucket Location
	6.9 Obtaining Storage Information About a Bucket
	6.10 Setting or Obtaining a Bucket Quota
	6.11 Setting or Obtaining the Storage Class of a Bucket

	7 Object Upload
	7.1 Object Upload Overview
	7.2 Performing a Streaming Upload
	7.3 Performing a File-Based Upload
	7.4 Obtaining Upload Progresses
	7.5 Creating a Folder
	7.6 Setting Object Properties
	7.7 Performing a Multipart Upload
	7.8 Configuring Lifecycle Management
	7.9 Performing an Appendable Upload
	7.10 Performing a Resumable Upload
	7.11 Performing a Browser-Based Upload

	8 Object Download
	8.1 Object Download Overview
	8.2 Performing a Streaming Download
	8.3 Performing a Partial Download
	8.4 Obtaining Download Progresses
	8.5 Performing a Conditioned Download
	8.6 Rewriting Response Headers
	8.7 Obtaining Customized Metadata
	8.8 Downloading a Cold Object
	8.9 Performing a Resumable Download

	9 Object Management
	9.1 Obtaining Object Properties
	9.2 Managing Object ACLs
	9.3 Listing Objects
	9.4 Deleting Objects
	9.5 Copying an Object

	10 Authorized Access
	10.1 Using a URL for Authorized Access

	11 Versioning Management
	11.1 Versioning Overview
	11.2 Setting Versioning Status for a Bucket
	11.3 Viewing Versioning Status of a Bucket
	11.4 Obtaining a Versioning Object
	11.5 Copying a Versioning Object
	11.6 Restoring a Versioning Cold Object
	11.7 Listing Versioning Objects
	11.8 Setting or Obtaining a Versioning Object ACL
	11.9 Deleting Versioning Objects

	12 Lifecycle Management
	12.1 Lifecycle Management Overview
	12.2 Setting Lifecycle Rules
	12.3 Viewing Lifecycle Rules
	12.4 Deleting Lifecycle Rules

	13 CORS
	13.1 CORS Overview
	13.2 Setting CORS Rules
	13.3 Viewing CORS Rules
	13.4 Deleting CORS Rules

	14 Access Logging
	14.1 Logging Overview
	14.2 Enabling Bucket Logging
	14.3 Viewing Bucket Logging
	14.4 Disabling Bucket Logging

	15 Static Website Hosting
	15.1 Static Website Hosting Overview
	15.2 Website File Hosting
	15.3 Setting Website Hosting
	15.4 Viewing Website Hosting Settings
	15.5 Deleting Website Hosting Settings

	16 Event Notification
	16.1 Event Notification Overview
	16.2 Setting Event Notification
	16.3 Viewing Event Notification Settings
	16.4 Disabling Event Notification

	17 Troubleshooting
	17.1 HTTP Status Codes
	17.2 OBS Server-Side Error Codes
	17.3 SDK Custom Exceptions
	17.4 SDK Common Response Headers
	17.5 Log Analysis

	18 FAQs
	18.1 How Can I Create a Folder?
	18.2 How Can I List All Objects in a Bucket?
	18.3 How Can I Use a URL for Authorized Access?
	18.4 How Can I Upload an Object in Browser-Based Mode?
	18.5 How Can I Download a Large Object in Multipart Mode?
	18.6 What Can I Do to Implement Server-Side Root Certificate Verification?
	18.7 How Can I Set an Object to Be Accessible to Anonymous Users?
	18.8 How Can I Identify the Endpoint and Region of OBS?
	18.9 What Is the Retry Mechanism of SDK?
	18.10 How Do I Obtain the Static Website Access Address of a Bucket?
	18.11 How Do I Obtain the Object URL?
	18.12 How to Improve the Speed of Uploading Large Files over the Public Network?
	18.13 How Do I Stop an Ongoing Upload Task?
	18.14 How Can I Perform a Multipart Upload?
	18.15 How Can I Perform a Download in Multipart Mode?
	18.16 How Can I Obtain the AK and SK?
	18.17 How Do I Confirm That the Uploaded Object Has Overwritten the Existing Object in the Bucket with the Same Name?
	18.18 Does the SDK Support Uploading, Downloading, or Copying Objects in a Batch?

	A API Reference
	B Change History

