Java SDK Developer Guide

Object Storage Service

Date 2020-02-26

Object Storage Service

Java SDK Developer Guide Contents

Contents
T SDK DOWNLOAA LINKS.....oioniieuiereirierercersencnesnecnesnsessssassssssassssssasessasasssssssssssssssssassssssassssssasssass 1
2 EXQMPLE Programs.......cecceeereeceeereecneeseesaseseessessesssessssssssssssssssssssessssssessassssssassssssasssassasssassaes 2
30 LU ol] = 4
3.1 BEFOIE YOU STAIT ..ttt e bbbt 4
3.2 CrEATING ACCESS KBYS....o ittt tas ettt sttt s st a st es et e s s sbae s et bstaebeese b easbeae b sasaneanen 4
3.3 Preparing @ Development ENVIFONMENT........ccoiiriierieieeeeeeteeeteestesseisssesssssssssessssessssssssessssssasssssssssssssssssssssessesnsns 5
3.4 INSLALLING ThE SDK...eeeieiieieieitete sttt ss s ss bbb s s s st s st ss s s s s bbb ensensnssessssnnsns 6
3.5 ObtAINING ENAPOINTS. ...ttt st s ettt s e s s st se s s s enseeansantans 6
3.6 Initializing an INStanCe Of ODSCLENT........cc.veieieeeieeieter ettt ettt st sessss bbb s st ssssansansanaens 6
3.7 CrEatiNgG @ BUCKET ...ttt ss s s st s bbbt en s ss e s ssssansensnsans 7
3.8 UPLOQAING QN ODJECL. ...ttt es s ee sttt bbb s et s easenntans 7
3.9 DOWNLOAAING QN ODJECL....eieieeieiicieieieteee ettt s st s s s bbb bbbt s b s e bbbt et ssesae s sans st 7
3,10 LISING ODJECES..... ittt sttt st ss s sss s s st s s s e s s s s s s e s s sassessssss s s et ansessessessssssssnssnsnes 8
3.1 DEleting AN ODJECE. ...ttt sttt et bbbttt 8
3.12 General EXamples Of ODSCUENT. ..ottt sss s s s ssssssssssasssssss s ssesssssessssssssnssnsansnns 8
4 INTIALIZATION. ..ttt sttt ss s sss s s s s as s snsnes 10
4.1 ConfiguriNg the AK @Nd SK.....iieeeieeisieissisis sttt ssssss s sss sttt ssssssssss st essessssssssssssssssanssssenes 10
4.2 Creating an INStaNCe Of ODSCLENT.......ccuoiieeec ettt bbb bbb s bbb 10
4.3 Configuring an INStanCe Of ODSCLENT.......c.ccueeiiierieeeeee ettt bbb e s s s sansansas 12
4.4 CoNFIGUIING SDK LOGQING. .. tuiuieriiririeririeisiseissessessanes 17
4.5 Configuring Server-Side Certificate VerifiCation......oo ettt eees 17
4.6 Transparently Transferring the AK @nd SKu...... sttt sessessssssssss s st sssssssssssssssnses 18
5 FAULL LOCAtING....ucccieieeeeeeceeeeerteeeecaeeeesaeeseessessaesseesaesseesssseessessesssssssesasssessssssesssesssssssssaennes 19
5T MBENOMS. ...ttt e s b bbb 19
5.2 INOLADLE ISSUES.......comimiiiiicieireie it eeeseeeese st ea s et e e e st e ettt 20
6 BUucket ManagemeENnt......... . iiririreecneeeesneseesessessssssssssessssssesssssssssssssssasssssssssssssssssasses 24
6.7 CreatiNng @ BUCKET ...ttt e ettt beee 24
5.2 LISEING BUCKELS......oieveieetctceeeieie sttt sessae sttt b bbb s s b b s bbb bbb b e bbbt n st es s s s ssnsenses 25
6.3 DELETING @ BUCKET.c..ueeeeerieeee ettt s st a s s s st nsensnnsnsanen 26
6.4 Identifying Whether @ BUCKET EXISES.........ovririririereieieeiseisiseeisstsssseiss st sssesss s sssss s s st ssssessssssssssssssssssansans 26
6.5 ObtaiNiNng BUCKEt METAAALA.......c.coveieiririeei ettt ssss s s s bbb s ss s s bbb s st esssnsssansans 26

2020-02-26 i

Object Storage Service

Java SDK Developer Guide Contents
6.6 MANAGING BUCKET ACLS.....ooireeeeeeceeeieieisie sttt sttt st ss s s ssssss st ss st s s ssssssssssssnsssssnsesssssessnsanen 27
6.7 MaNAQiNg BUCKET POLICIES........ceiirieieeriieee ettt sttt st sntas 30
6.8 ObtaiNiNg @ BUCKET LOCALION......c.coiiiririeeteeee ettt sse s bbbt ss s bbbt st s s sas s s snans 31
6.9 Obtaining Storage Information ABOUL @ BUCKET..........ccovuiereeriririreesisesee sttt sttt ssssesssssssnens 32
6.10 Setting or Obtaining @ BUCKET QUOTA.........cceirieeeireitereie ettt ettt s bbb sa e sanen 32
6.11 Setting or Obtaining the Storage Class Of @ BUCKEL.........cc.coeeierierierieeeeeeeisie sttt sasssses 32
7 ODJECt UPLOQU......ccouieeerieeeeieeereeeeeceeseeseesteeseessesseesasssesssssssessesssessesssessesssesssssssssassssssassanns 35
7.7 ODbJECE UPLOQA OVEIVIEW.......ooceeeeeeieieeieisisiesissessissssssssss sttt sssssssss bbb st s s sssssssssss s ss s sssssessssssssssanssnssnsensssnsans 35
7.2 Performing a Streaming UPLO@d.......couiieirininirieieciseseesssess st sessssssssss s s sssanes 35
7.3 Performing a File-Based UPLO@d........ccooriririeeireiiee ettt ssess st es st snen 36
7.4 ObtaiNiNg UPLOQd PrOgrESSES.......coiuiieriiereeriesieeisissssississessessssssssasssassssssssssssssssesssssessnses 36
7.5 CrEatiNG @ FOLRI ...ttt st s s s s s st st nsnssss s sanen 37
7.6 SETLING ODJECE PrOPEITIES.....eceeece ettt es sttt sttt b e bbbt eas s seene 38
7.7 Performing @ MULLIPArt UPLO@d.........coiuieeeeeirieieeiseieeetseesesis et ssssss s s s st ssssssssssss bbbt s sssssesansns 40
7.8 Configuring Lifecycle ManagemeNti. ...t sesesssssssssss s s ssssssssssssssssssssssssssssssssssssssesanes 49
7.9 Performing an Appendable UPLOad...........ereeeee ettt ss st essseaseasenas 49
7.10 Performing @ ReSUMADbLE UPLOQQ........coiiiieieieirieee sttt sss s sttt ss s ssas bbb nsssssansans 50
7.11 Performing @ Browser-Based UPLOQd..........corrrirrrinrerienininisisis st sessss s sseses 52
8 Object DOWNLOAd...........coeeeeceeeececeeceeceeceeseeeeesaeeseessesseessesssessessassssessassessssssessassssasasenes 54
8.1 ODbjJeCt DOWNLOAA OVEIVIEW........ceeeeererieicereiseeisisiss st sssssssss s sssssssssssssssssssssssssssssesssssssssssssssssssssssssessssssssssssssssnses 54
8.2 Performing a Streaming DOWNLOAd..........couiriiineirireieeieise ettt ee st st sa et besss 54
8.3 Performing a Partial DOWNLOAM. ..ottt sssassss bbbt sssessssss bbb sesssssesssssnsans 55
8.4 ObtaiNiNng DOWNLOAA PrOGIESSES.......covureierrerierierieississseessssesssnses 55
8.5 Performing a Conditioned DOWNLOAM.........c.cuvureurieririeieireiriie ettt st ses st es e saeen 56
8.6 REWIItiING RESPONSE HEAUEIS........oceiericiri sttt bt sa st bbb bbb s s s sanssnsas 57
8.7 Obtaining CUStOMIZEA MELAAALA.......ceveeereerereeeei ettt s st ssss st ens s s ssesassenen 58
8.8 DOWNLOAAING @ COLA ODJECL.....euiuieieieieieireirreeee ettt sttt st eaee s sanen 59
8.9 Performing a ResumMable DOWNLIOAM. ...t ssesss s s st sssss s sss s bs s sesssssesansns 59
9 ODbject ManNAgeMENT......... e eeeeceececceeereeseeceeesaeesseesseessnsssasesasessesssasesnssssssssesssnsssasesnes 63
9.1 ODbtaiNING ODJECE PrOPEITIES......cviverieirieteeieee ittt s st s s s s st s s s s s sass st sensssssssesanen 63
9.2 MANQAGING ODJECE ACLS....eeeeeerieieisieese st se s sss st ss st ss s st s s s s s sss s s s st st essesssssssssssssansenes 63
0.3 LISEING ODJECES... ettt ettt b st b e sns s senen 65
0.4 DELELING ODJECLS.....ouiririiecteeteeieiieie sttt sttt bbb s s se s s bt s s s s b s s b b st b ensensnssessnsas 68
0.5 COPYING AN ODJECL.c..u ittt ses s ssss s s st st sss st sss s s ssss s s st s s s ssessessssssssssessnsasssssssssssssansas 69
TO AULNOKIZEA ACCESS......coueouiiririiriniinisnitncssetncssstsssassnsassns 74
10.1 USING @ URL fOr AULNOIIZEA ACCESS.....vuiereerirrireereeniieisisieississesesssesssesssssnes 74
11 Versioning ManagemeENt.........ecceereeneeceeneenecseeseeseessesseesassssessesssssssssssssssssssssssasssassassns 85
TT1.T VEISIONING OVEIVIEW.....coeuiieiiiriiree ettt sttt sttt sttt sttt st s st se s se st et sesstsesetaesetasseeas 85
11.2 Setting Versioning Status fOr @ BUCKET.........cooi ettt eesese sttt 85
11.3 Viewing Versioning Status Of @ BUCKET.........cccoeiuiieriereeeeeisieiseiss sttt sssssssssssss st sssssssessnsas 87

2020-02-26 iii

Object Storage Service

Java SDK Developer Guide Contents
11.4 Obtaining @ VersioNiNg ODJECE.......o vttt sttt sss st ssssssssssssssssssssssssssssssssssnes 87
11.5 Copying @ VErSiONING ODJECL ..ottt sess sttt st ss s sssssssss st sasssssessssssssssnssnes 87
11.6 Restoring @ Versioning COld ODJECE.........ov ettt es sttt ses st s s 88
17.7 Listing VErsioNiNG ODJECES.......ovviureuriirrieieriireiseestess e ess et esess e sssssssssssssssss s sssssesss s sss s sssesssssesssesssssessssssessnsanesnns 88
11.8 Setting or Obtaining a Versioning ODJECE ACL........cueeeeiririeierieeiesieeeeeiessss st ssssessesesssssas s sssssssessssssssssansas 92
11.9 Deleting VersionNiNg ODJECES.........ririiesreeeiesee et sss s sttt ssssssssssss s ss st s ssssssssssssassessansssens 93
12 Lifecycle Management...........iiininniininnennieneisnnesenssssssssssssssssssssssssasssssssssssssassssssassns 94
12.1 Lifecycle ManagemeENt OVEIVIEW...........ccovuvriereereeisesireiseestesessesssnssnsses 94
12.2 SELEING LIFECYCLE RULES......oeeee ettt ettt sttt tans 95
12.3 VIEWING LIfECYCLE RULES.......eeeeeeeetstt sttt bbbttt ba s s sensesannans 96
12.4 Deleting LIfECYCLE RULES........oviereeee sttt ss bbb s bbb bbbt s s s s e s b s s 96
T3 CORS . ceerecrntteessnetesssanseesssnssssssnnssesssnssssssasssssssnsssssssassessanssssssnsssssssnssssssnassesssnssesssnsasesses 97
13.T CORS OVEIVIEW....ueueereireereiieireieeiseise e sesesse e sss s e esses s ss st s ss st et e bbbttt sttt 97
13.2 SELLING CORS RULES......oeeieerieicireireie ettt es et s s sttt st s s e e s e snesessensnens 97
13.3 VIEWING CORS RULES....... ottt sttt ta sttt st sttt anens 98
13.4 Deleting CORS RULES........ceeeeeeeecteisis sttt sttt bbbt bbb s s b bbb b s e s assassansansenes 98
T4 ACCESS LOGGING....ciouiiriiirreeieennrceenaieeesaeesesssesssesasessessssssesssssssssssssesasssssssssssassassassssssassssssasss 929
TA.T LOGQING OVEIVIEW......uietieirierireeeireesiseieiseas st asssseast st eassseastsessssess s ssssssssssssssasssesssseastseassssassssassssstssssssssesnssesnssesnsses 99
14.2 ENAbLiNG BUCKEE LOGGING...viiriririiririiriririeissis st tsesssssass s st ssssssessssssssssssssssssssssssssssssssssssnssssssssssssnsns 99
14.3 Viewing BUCKET LOGGING....c.iiiiriieiiieiiieisieisiste sttt sas s st et sas bbb sas s s s s sn s sensnsns 100
14.4 Disabling BUCKET LOGGING....cvurioiuieriiriiriiriiriieiieieieiseisetsteseiseastsess st sssaseasess st st sscssesssasessssssss s sssesssssesssassanen 100
15 Static Website HOStING......ccceeiririeeeeceeeeceeeeceeeeceesnecseesnessessnssssessssssesssssesssessaesnes 101
15.1 Static WebSite HOSEING OVEIVIEW.........covirireerieeieesesisisisisississesssssssssss st ssssssssssssssssssss s ssssssssssssssssassssssnsensnns 101
15.2 WEDSItE FIle HOSTING...ovurieririeirieirrriieee ettt sttt ss s bbbttt sss s s s s es s st ensssssssnssnsansnns 101
15.3 Setting WEDSITE HOSEINGvuieiereeririerieieieire ettt s sttt s st se s s easesassnssnsnsans 102
15.4 Viewing Website HOSTING SETLINGS.......coieiieeeeieecteecieeeteee ettt st ses 103
15.5 Deleting Website HOSTING SETLINGS.......coviiririeieireineireiseeieeis ettt ettt sess st eas s sastas 103
16 EVENt NOTIfICAtiON.....coeieeeeeeecectecectccececcerseeceeeeceeseeceesaessessnesssesnssssesnasssessassassnns 104
16.1T EVENt NOLIFICAtION OVEIVIEW......ueuciiieeeertireieieiree ettt ss sttt ettt 104
16.2 Setting EVENT NOTITICAtION ...ttt sttt s st et enses 104
16.3 Viewing Event NOtIfiCation SETEINGS......c.covrrirrirrireireireirieie sttt sttt sss s sss s sss s ssssssssssassnns 104
16.4 Disabling EVENT NOTITICATION. ...ttt s sttt s e sssensssensssnsesanens 105
17 TroUbLESNOOTING....cucoeeeeeeeceeeectcceeceeeeceereeceesaeeseesaeeseesaeseesssesnessesssessesssesssssnsssassansneas 106
17.7 HTTP STAUUS COES.....eueeceriinieeeereeetieeeseeseeseet st sssesse et esse e e es s es s s a st et ses bbbt stnes 106
17.2 OBS Server-Side ErrOr COUES......couuiiiriineimeeereeeeseetseesesisesse e sssesse et sse e ssse b e ssse b aees st saess s sasesse e sasssesaes 108
17.3 SDK CUSEOM EXCEPLIONS. ...ceeieieiricieieirieiseet sttt st sttt sttt ettt ettt eaens 117
17.4 SDK COmMMON RESPONSE HEAUEBIS.......oeeeeerieeeiecieei ettt sttt b s bbb s sss s snas 118
175 LOG ANQLYSIS...euitiirieieeieieireireir ettt es et ettt h ettt ettt 118
T8 FAQS. .. eiiieiiintinnnienenessasissssosssssssnsssssssssssssssassosssssssassssssssssassssssssssssosssssssassssssssssassssasssssas 121
18.1 HOW Can | Create @ FOLARI?......u ettt ettt s ettt 121

2020-02-26 iv

Object Storage Service

Java SDK Developer Guide Contents
18.2 How Can | List ALl ODJECES iN @ BUCKEL?.......ooieere ettt ssassss st 121
18.3 How Can | Use @ URL fOr AULNOFIZEA ACCESS?......c.vvieieeerereeieieeiseisei ettt sses s ss st sssssssassasenns 121
18.4 How Can | Upload an Object in Browser-Based MOdE?..........creeereninisineissiesesseessssssssssssasssesssssnsans 121
18.5 How Can | Download a Large Object in Multipart MOde?..........erririrernereseseessseses s sssssssssssssseens 121
18.6 What Can | Do to Implement Server-Side Root Certificate Verification?........c.cccooveeeeveveceneceinecireeennne. 121
18.7 How Can | Set an Object to Be Accessible to ANONYMOUS USEIS?........ccoiuieeeeerereerinrerisiesissesessesssssssssssssens 122
18.8 How Can | Identify the Endpoint and Region Of OBS?........nninneeireissisesssss s sssssesssssssssanes 122
18.9 What Is the Retry Mechanism Of SDK?..........o ettt ses s esssss s st sssssssassnssnns 122
18.10 How Do | Obtain the Static Website Access Address of @ BUCKEL?..........cccveveerieirerrniesisreseseeseisisinen 122
18.11 How Do | Obtain the ODJECE URL?........ooieeieeririeicreireseeieesisisisstsstssssesssss st sssssssssssssssssssssssssssssssssssssses 123
18.12 How to Improve the Speed of Uploading Large Files over the Public Network?..........cccccoeeeeeeerrrennnee. 123
18.13 How Do | Stop an ONgoinNg UPLoad TaSK?..........ceeriiirreeienieeinisisississsesessesssessssssssssssssssssssssssssssssssssessssssens 123
18.14 How Can | Perform @ MUltipart UPLOad?........ciirininirieieissieses st ssssssssssssssssssssssssssssssssssssssanes 124
18.15 How Can | Perform a Download in Multipart MOde? ... eseesess e asese s 124
18.16 How Can | Obtain the AK @Nd SK?......... ettt sssssssssesssssssssses s ssssssssssnsansas 124
18.17 How Do | Confirm That the Uploaded Object Has Overwritten the Existing Object in the Bucket

WITH The SAME NAMIE?....c ittt b bbbt st 125
18.18 Does the SDK Support Uploading, Downloading, or Copying Objects in a Batch?..........ccocoeeuveivennenee 125
A APL REFEIENCE.......cueoeeeeeeeeeeceeeerneeseessestssnsessssssssasssssssssssssssssssssssssesssssssssssssssassssasassssssassss 128
B Chang@ HiStOrY ... oiceeeeeeeeeceeceeeeecaeseecneeseesseeseessessnesssesssssssssesseesssssessasssessassssasasssaases 129

2020-02-26 v

Object Storage Service
Java SDK Developer Guide 1 SDK Download Links

SDK Download Links

SDK Source Codes and APl Documentation
e Latest version of OBS Java SDK: Click here to download.
e OBS Java SDK API document: OBS Java SDK API Reference

Compatibility
e Recommended JDK versions: 7, 8,9, and 10

e Third-party dependency: This version is not completely compatible with earlier
versions (2.1.x). httpclient4.x is replaced with okhttp3.

e Namespace: Compatible with earlier versions (2.1.x). All external APIs are
contained in the com.obs.services, com.obs.services.model, and
com.obs.services.exception packages.

e API functions: Compatible with earlier versions (2.1.x).

2020-02-26 1

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/current/java/en/java.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/apidoc/en/java/index.html

Object Storage Service

Java SDK Developer Guide 2 Example Programs

Example Programs

OBS Java SDK provides abundant example programs for your reference and direct
use. These programs can be obtained from the OBS Java SDK. For example, files in
eSDK_Storage_OBS_<Version/d>_Java.zip obtained by decompressing
eSDK_Storage_OBS_<lersion/d>_Java/samples_java are example programs.
Alternatively, you can click code package names provided in the following table to
obtain corresponding example programs.

Example programs include:

Sample Code

Description

BucketOperationsSample

How to use bucket-related APIs.

ObjectOperationsSample

How to use object-related APIs.

DownloadSample How to download an object.
CreateFolderSample How to create a folder.
DeleteObjectsSample How to delete objects in a batch.

ListObjectsSample

How to list objects.

ListVersionsSample

How to list versioning objects.

ListObjectsinFolderSample

How to list objects in a folder.

ObjectMetaSample

How to customize object metadata.

SimpleMultipartUploadSample

How to perform a multipart upload.

RestoreObjectSample

How to download Cold objects.

ConcurrentCopyPartSample

How to concurrently copy parts of a
large object.

ConcurrentDownloadObjectSample

How to concurrently download parts
of a large object.

ConcurrentUploadPartSample

How to concurrently upload parts of a
large object.

2020-02-26

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/BucketOperationsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ObjectOperationsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/DownloadSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/CreateFolderSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/DeleteObjectsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ListObjectsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ListVersionsSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ListObjectsInFolderSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ObjectMetaSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/SimpleMultipartUploadSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/RestoreObjectSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ConcurrentCopyPartSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ConcurrentDownloadObjectSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ConcurrentUploadPartSample.zip

Object Storage Service
Java SDK Developer Guide

2 Example Programs

Sample Code

Description

PostObjectSample

How to perform a browser-based
upload.

TemporarySignatureSample

How to use URLs for authorized
access.

GetTokenSample

How to obtain the security token.

2020-02-26

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/PostObjectSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/TemporarySignatureSample.zip
https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/GetTokenSample.zip

Object Storage Service
Java SDK Developer Guide 3 Quick Start

Quick Start

3.1 Before You Start

e Ensure that you are familiar with OBS basic concepts from Help Center, such
as bucket, object, region, and AK and SK.

e You can see General Examples of ObsClient to understand how to call OBS
Java SDK APIs in a general manner.

e After an API calling is complete using an instance of ObsClient, view whether
an exception is thrown. If no, the return value is valid. If yes, the operation
fails and you can obtain the error information from an instance of
ObsException.

e After an API is successfully called by an instance of ObsClient, an instance of
ResponseHeader containing the response headers will be returned.

e Some features are available only in some regions. If the HTTP status code of
an API is 405, check whether the region supports this feature.

3.2 Creating Access Keys

OBS uses AKs and SKs in user accounts for signature verification to ensure that
only authorized accounts can access specified OBS resources. Detailed
explanations about AK and SK are as follows:

e An access key ID (AK) defines a user who accesses the OBS system. An AK
belongs to only one user, but one user can have multiple AKs. The OBS
system recognizes the users who access the system by their access key IDs.

e A secret access key (SK) is the key used by users to access OBS. It is the
authentication information generated based on the AK and the request
header. An SK matches an AK, and they group into a pair.

Access keys are classified into permanent access keys (AK/SK) and temporary
access keys (AK/SK and security token). Permanent access keys are valid for a year
after creation. Each user can create up to two valid AK/SK pairs. Temporary access
keys can be used to access OBS only within the specified validity period. After the
temporary access keys expire, they need to be obtained again. For security
purposes, you are advised to use temporary access keys to access OBS, or

2020-02-26 4

https://support.hc.sbercloud.ru/obs/index.html

Object Storage Service
Java SDK Developer Guide 3 Quick Start

periodically update your access keys if you use permanent access keys. The
following describes how to obtain access keys of these two types.

Permanent Access Keys

Log in to OBS Console.

2. In the upper right corner of the page, hover the cursor over the username and
choose My Credentials.

3. On the My Credentials page, select Access Keys in the navigation pane on
the left.

4. On the Access Keys page, click Create Access Key.

5. In the Create Access Key dialog box that is displayed, enter the password and
verification code.

(11 NOTE

e If you have not bound an email address or mobile number, enter only the
password.

e If you have bound an email address and a mobile number, you can select the
verification by either email or mobile phone.

6. Click OK.

7. In the Download Access Key dialog box that is displayed, click OK to save the
access keys to your browser's default download path.

8. Open the downloaded credentials.csv file to obtain the access keys (AK and
SK).

(1] NOTE

e A user can create a maximum of two valid access keys.

e Keep the access key properly. If you click Cancel in the dialog box, the access keys
will not be downloaded, and cannot be obtained later. You can re-create access
keys if you need to use them.

Temporary Access Keys

The temporary AK/SK and security token are temporary access tokens issued by
the system to users. The validity period ranges from 15 minutes to 24 hours which
can be set using APIs. After the validity period expires, users need to obtain the
access keys again. The temporary AK/SK and security token shall observe the
principle of least privilege. When the temporary AK/SK are used for
authentication, the temporary AK/SK and security token must be used at the same
time.

For details about how to obtain temporary access keys, see Obtaining a
Temporary AK/SK.

For details about how to use temporary access keys, see 4.2 Creating an Instance
of ObsClient.

3.3 Preparing a Development Environment

e Download a recommended version of JDK from the Oracle's official website
and install it.

2020-02-26 5

https://docs.prod-cloud-ocb.orange-business.com/en-us/api/iam/iam_04_0002.html
https://docs.prod-cloud-ocb.orange-business.com/en-us/api/iam/iam_04_0002.html
http://www.oracle.com/technetwork/java/archive-139210.html

Object Storage Service
Java SDK Developer Guide 3 Quick Start

e The latest version of Eclipse IDE for Java Developers is required and can be
downloaded from the Eclipse's official website.

3.4 Installing the SDK

Step 1
Step 2
Step 3

Step 4

Step 5

Import the JAR files in the Eclipse Java project as follows:
Download the OBS Java SDK.

Decompress the SDK.

Copy all JAR files in the decompressed libs folder to your project.

On Eclipse, select the project and choose Properties > Java Build Path > Add
JARs.

Select all JAR files that have been copied in step 3, click OK to finish importing
JAR files.

--—-End

3.5 Obtaining Endpoints

e You can click here to view the endpoints and regions enabled for OBS.

NOTICE

The SDK allows you to pass endpoints with or without the protocol name. Suppose
the endpoint you obtained is your-endpoint. The endpoint passed when
initializing an instance of ObsClient can be http://your-endpoint, https://your-
endpoint, or your-endpoint.

3.6 Initializing an Instance of ObsClient

Each time you want to send an HTTP/HTTPS request to OBS, you must create an
instance of ObsClient. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Use the instance to access OBS.

// Close obsClient.
obsClient.close();

(11 NOTE

For more information, see chapter "Initialization."

2020-02-26

http://www.eclipse.org/downloads/eclipse-packages/
https://support.hc.sbercloud.ru/en-us/endpoint/index.html

Object Storage Service
Java SDK Developer Guide 3 Quick Start

3.7 Creating a Bucket

A bucket is a global namespace of OBS and is a data container. It functions as a
root directory of a file system and can store objects. The following code shows
how to create a bucket:

obsClient.createBucket("bucketname");
(10 NOTE
e Bucket names are globally unique. Ensure that the bucket you create is named
differently from any other bucket.
e A bucket name must comply with the following rules:

. Contains 3 to 63 characters, chosen from lowercase letters, digits, hyphens (-), and
periods (.), and starts with a digit or letter.

° Cannot be an IP-like address.
° Cannot start or end with a hyphen (-) or period (.)
° Cannot contain two consecutive periods (.), for example, my..bucket.

° Cannot contain periods (.) and hyphens (-) adjacent to each other, for example,
my-.bucket or my.-bucket.

e If you create buckets of the same name, no error will be reported and the bucket
properties comply with those set in the first creation request.

e For more information, see 6.1 Creating a Bucket.

3.8 Uploading an Object

Sample code:

obsClient.putObject("bucketname", "objectname", new ByteArraylnputStream("Hello OBS".getBytes()));

(11 NOTE

For more information, see 7.1 Object Upload Overview.

3.9 Downloading an Object

Sample code:

ObsObject obsObject = obsClient.getObject("bucketname", "objectname");
InputStream content = obsObject.getObjectContent();
if (content != null)

BufferedReader reader = new BufferedReader(new InputStreamReader(content));
while (true)
{
String line = reader.readLine();
if (line == null)
break;
System.outprintln("\n" + line);

reader.close();

}

2020-02-26 7

Object Storage Service
Java SDK Developer Guide 3 Quick Start

(1J NOTE

e When you call ObsClient.getObject, an instance of ObsObject will be returned. This
instance contains the contents and properties of the object.

e When you call ObsObject.getObjectContent to obtain an object input stream, you can
read the input stream to obtain its contents. Close the input stream after use.

e For more information, see 8.1 Object Download Overview.

3.10 Listing Objects

After objects are uploaded, you may want to view the objects contained in a
bucket. Sample code is as follows:

ObjectListing objectListing = obsClient.listObjects("bucketname");

for(ObsObject obsObject : objectListing.getObjects()){
System.outprintln(" - " + obsObject.getObjectKey() + " " + "(size =" +

obsObject.getMetadata().getContentLength() + ")");

(1 NOTE

e When you call ObsClient.listObjects, an instance of ObjectListing will be returned. This
instance contains the response of the listObject request. You can use
ObjetListing.getObjects to obtain description of all of the listed objects.

e In the previous sample code, 1000 objects will be listed, by default.
e For more information, see Listing Objects.

3.11 Deleting an Object

Sample code:

obsClient.deleteObject("bucketname", "objectname");

3.12 General Examples of ObsClient

After an API calling is complete using an instance of ObsClient, view whether an
exception is thrown. If no, the return value is valid and an instance of the
HeaderResponse class (or of its sub-class) is returned. If yes, obtain the error
information from the instance of ObsException.

Sample code:

// You can reserve only one global instance of ObsClient in your project.
// ObsClient is thread-safe and can be simultaneously used by multiple threads.
ObsClient obsClient = null;
try
{
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
obsClient = new ObsClient(ak, sk, endPoint);
// Call APIs to perform related operations, for example, uploading an object.
HeaderResponse response = obsClient.putObject("bucketname", "objectname", new File("localfile")); //
localfile indicates the path of the local file to be uploaded. You need to specify the file name.
System.out.println(response);
}

2020-02-26 8

Object Storage Service
Java SDK Developer Guide 3 Quick Start

catch (ObsException e)

{
System.outprintin("HTTP Code: " + e.getResponseCode());
System.out.println("Error Code:" + e.getErrorCode());
System.out.println("Error Message: " + e.getErrorMessage());

System.outprintln("Request ID:" + e.getErrorRequestld());

System.outprintln("Host ID:" + e.getErrorHostld());
Hinally{

// Close the instance of ObsClient. If this instance is a global one, you do not need to close it every time
you complete calling a method.

// After you call the ObsClient.close method to close an instance of ObsClient, the instance cannot be
used any more.

if(obsClient != null){

try

// obsClient.close();
}
catch (IOException e)
{
}
}
}

2020-02-26 9

Object Storage Service

Java SDK Developer Guide

4 Initialization

Initialization

4.1 Configuring the AK and SK

To use OBS, you need a valid pair of AK and SK for signature authentication. For
details, see 3.2 Creating Access Keys.

After obtaining the AK and SK, you can start initialization.

4.2 Creating an Instance of ObsClient

ObsClient functions as the Java client for accessing OBS. It offers callers a series of
APIs for interaction with OBS and is used for managing and performing operations
on resources, such as buckets and objects, stored in OBS. To use OBS Java SDK to
send a request to OBS, you need to initialize an instance of ObsClient and modify
the default configurations in ObsConfiguration based on actual needs.

e If you use the endpoint to create an instance of ObsClient, all parameters are
in their default values and cannot be modified.

Sample code for creating an instance of ObsClient using permanent

access keys (AK/SK):

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Use the instance to access OBS.

// Close ObsClient.

obsClient.close();

Sample code for creating an instance of ObsClient using temporary

access keys (AK/SK and security token):

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

String securityToken = "*** Provide your Security Token ***';

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, securityToken, endPoint);
// Use the instance to access OBS.

// Close ObsClient.

obsClient.close();

2020-02-26

10

Object Storage Service

Java SDK Developer Guide

4 Initialization

(11 NOTE

For details about how to obtain and use temporary AK/SK and security token, see
2 Example Programs.

Sample code for creating an instance of ObsClient using

BasicCredentialsProvider:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(new BasicObsCredentialsProvider(ak, sk), endPoint);
// Use the instance to access OBS.

// Close ObsClient.

obsClient.close();

Sample code for creating an instance of ObsClient using
EnvironmentVariableObsCredentialsProvider:

String endPoint = "https://your-endpoint";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(new EnvironmentVariableObsCredentialsProvider(),
endPoint);

// Use the instance to access OBS.

// Close ObsClient.

obsClient.close();

(1] NOTE

In the preceding code, the access keys are found in the system environment
variables. You need to define OBS_ACCESS_KEY_ID and
OBS_SECRET_ACCESS_KEY in the system environment variables to represent the
permanent AK and SK respectively.

Sample code for creating an instance of ObsClient using

EcsObsCredentialsProvider:

String endPoint = "https://your-endpoint";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(new EcsObsCredentialsProvider(), endPoint);
// Use the instance to access OBS.

// Close ObsClient.

obsClient.close();

(11 NOTE

When an application is deployed on an ECS, the instance of ObsClient created
using the preceding methods automatically obtains the temporary access keys
from the ECS and updates them periodically.

NOTICE

Ensure that the UTC time of the server is the same as that of the
environment where the application is deployed. Otherwise, the temporary
access keys may fail to be updated in time.

In addition to the preceding methods, you can also search in sequence to
obtain the corresponding access keys from the environment variables and
ECSs.

Sample code for creating an instance of ObsClient using the access keys
obtained by searching in sequence:

String endPoint = "https://your-endpoint";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(new OBSCredentialsProviderChain(), endPoint);

2020-02-26

11

Object Storage Service
Java SDK Developer Guide 4 Initialization

// Use the instance to access OBS.
// Close ObsClient.
obsClient.close();

(1 NOTE

The preceding method specifies that the access keys are searched from the
predefined list in sequence. By default, the system provides two predefined
search methods: obtaining the access keys from the environment variables and
obtaining from ECSs. ObsClient searches for the access keys from the
environment variables first and then from ECSs. In this case, ObsClient is created
using the first pair of access keys obtained in the search.

e If you use ObsConfiguration to create an instance of ObsClient, you can set
configuration parameters as needed during the creation. After the instance is
created, the parameters cannot be modified. For parameter details, see 4.3
Configuring an Instance of ObsClient. The preceding methods of creating an
instance of ObsClient support ObsConfiguration. The sample code is as
follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an ObsConfiguration instance.
ObsConfiguration config = new ObsConfiguration();
config.setEndPoint(endPoint);
config.setSocketTimeout(30000);
config.setMaxErrorRetry(1);

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, config);

// Create an instance of ObsClient using Provider.
// ObsClient obsClient = new ObsClient(new EnvironmentVariableObsCredentialsProvider(), config);
// ObsClient obsClient = new ObsClient(new EcsObsCredentialsProvider(), config);

// Use the instance to access OBS.

// Close ObsClient.
obsClient.close();

(11 NOTE

e The project can contain one or more instances of ObsClient.
e ObsClient is thread-safe and can be simultaneously used by multiple threads.

NOTICE

After you call ObsClient.close to close an instance of ObsClient, the instance
cannot be used any more.

4.3 Configuring an Instance of ObsClient

When you call the ObsConfiguration configuration class to create an instance of
ObsClient, you can configure the agent, timeout duration, maximum allowed
number of connections, and some other parameters listed in the following table.

2020-02-26 12

Object Storage Service
Java SDK Developer Guide

4 Initializati

on

Parameter

Description

Method

Recomme
nded
Value

connectionTime
out

Timeout period for
establishing an
HTTP/HTTPS
connection, in ms.
The default value is
60,000.

ObsConfiguration.setCon
nectionTimeout

[10000,
60000]

socketTimeout

Timeout duration
for transmitting
data at the Socket
layer, in ms. The
default value is
60,000.

ObsConfiguration.setSock
etTimeout

[10000,
60000]

idleConnectionTi
me

Allowed connection
idle time, in ms. If a
connection exceeds
the specified value,
the connection will
be closed. The
default value is
30,000.

ObsConfiguration.setldle
ConnectionTime

Default

maxldleConnecti
ons

Maximum number
of allowed idle
connections in the
connection pool.
The default value is
1000.

ObsConfiguration.setMax
IdleConnections

N/A

maxConnections

Maximum number
of concurrent HTTP
requests. The
default value is
1000.

ObsConfiguration.setMax
Connections

Default

2020-02-26

13

Object Storage Service
Java SDK Developer Guide

4 Initialization

Parameter

Description

Method

Recomme
nded
Value

maxErrorRetry

Maximum number
of retry attempts
(caused by
abnormal requests,
500, 503, and other
errors). The default
value is 3.

NOTE
This parameter is
invalid in object
upload and
download APIs if an
interruption occurs
after an upload or
download task
enters the data flow
processing phase. In
this case, no retry is
performed.

ObsConfiguration.setMax
ErrorRetry

[0, 5]

endPoint

Endpoint for
accessing OBS,
which contains the
protocol type,
domain name (or
IP address), and
port number. For
example, https://
your-endpoint:443.

ObsConfiguration.setEnd
Point

N/A

httpProxy

HTTP proxy
configuration. This

parameter is left
blank by default.

ObsConfiguration.setHttp
Proxy

N/A

validateCertifi-
cate

Whether to verify
the server
certificate. The
default value is
false.

ObsConfiguration.setVali
dateCertificate

N/A

verifyResponseC
ontentType

Whether to verify
ContentType of
the response
header. The default
value is true.

ObsConfiguration.setVeri
fyResponseContentType

Default

2020-02-26

14

Object Storage Service
Java SDK Developer Guide

4 Initialization

Parameter

Description

Method

Recomme
nded
Value

uploadStreamRe
tryBufferSize

Size of the cache
used for uploading
a stream object, in
bytes. The default
size is 512 KB.

ObsConfiguration.setUpl
oadStreamRetryBuffer-
Size

N/A

readBufferSize

Cache size for
downloading the
object from socket
streams, in bytes.
Value -1 indicates
that cache is not
configured. The
default value is -1.

ObsConfiguration.setRea
dBufferSize

N/A

writeBufferSize

Cache size for
uploading the
object to socket
streams, in bytes.
Value -1 indicates
that cache is not
configured. The
default value is -1.

ObsConfiguration.setWrit
eBufferSize

N/A

socketWriteBuff
erSize

Buffer size for
sending a socket, in
bytes. This
parameter
corresponds to
java.net.SocketOp
tions.SO_SNDBUF.
The default value is
-1, which indicates
no limitation.

ObsConfiguration.setSock
etWriteBufferSize

Default
value

socketReadBuffe
rSize

Buffer size for
receiving a socket,
in bytes. This
parameter
corresponds to
java.net.SocketOp
tions.SO_RCVBUF.
The default value is
-1, which indicates
no limitation.

ObsConfiguration.setSock
etReadBufferSize

Default
value

2020-02-26

15

Object Storage Service
Java SDK Developer Guide

4 Initialization

Parameter

Description

Method

Recomme
nded
Value

ory

keyManagerFact

Factory used for
generating
javax.net.ssl.KeyM
anager. This
parameter is left
blank by default.

ObsConfiguration.setKey
ManagerFactory

N/A

ctory

trustManagerFa

Factory used for
generating
javax.net.ssl.Trust
Manager. This
parameter is left
blank by default.

ObsConfiguration.setTrus
tManagerFactory

N/A

isStrictHostnam
eVerification

Whether to strictly
verify the server-
side host name.
The default value is
false.

ObsConfiguration.setlsStr
ictHostnameVerification

N/A

keepAlive

Whether to use
persistent
connections to
access OBS. The
default value is
true.

ObsConfiguration.setKee
pAlive

N/A

Chame

Whether to use
self-defined
domain name to
access OBS. The
default value is
false.

ObsConfiguration.setCna
me

N/A

sslProvider

Provider of
SSLContext. The
SSLContext
provided by JDK is
used by default.

ObsConfiguration.setSsIP
rovider

N/A

e

httpProtocolTyp

HTTP protocol type
used for accessing
OBS servers. The
default protocol is
HTTP 1.1.

ObsConfiguration.setHttp
ProtocolType

N/A

httpDispatcher

Customize a
dispatcher.

ObsConfiguration.setHttp
Dispatcher

N/A

2020-02-26

16

Object Storage Service
Java SDK Developer Guide 4 Initialization

(10 NOTE
e Parameters whose recommended value is N/A need to be set according to the actual
conditions.

e To improve the upload and download performance of files in the case that the network
bandwidth meets the requirements, you can tune the socketWriteBufferSize,
sockeReadBufferSize, readBufferSize, and writeBufferSize parameters.

e If the network is unstable, you are advised to set larger values for connectionTimeout
and socketTimeout.

e If the value of endPoint does not contain any protocol, HTTPS is used by default.

e For the sake of high DNS resolution performance and OBS reliability, you can set
endPoint only to the domain name of OBS, instead of the IP address.

4.4 Configuring SDK Logging

Step 1
Step 2
Step 3

OBS Java SDK provides the logging function, based on the Apache Log4j2 open
library. The SDK records WARN logs to the path represented by the JDK system
variable user.dir, by default. You can modify log configuration files to configure
logging based on your needs. The procedure is as follows:

Find the log4j2.xml file in the OBS Java SDK development package.
Modify log levels and save paths in the log4j2.xml file based on actual needs.

Save the log4j2.xml file to the classpath root directory, or call
Log4j2Configurator.setLogConfig to specify the save path of log4j2.xml directly.

--—-End

(11 NOTE

e For details about SDK logs, see 17.5 Log Analysis.

4.5 Configuring Server-Side Certificate Verification

Step 1

Step 2

OBS Java SDK supports server-side certificate verification to ensure that OBS is
provided by trusted servers. The following details how to configure server
certificate verification in Windows. (In Linux, replace %JAVA_HOME% with
SJAVA_HOME,))

(11 NOTE

If the root certificate on the OBS server is issued by an authoritative CA, skip steps 1 to 3.
(Root certificates issued by authoritative CAs are in the certificate library of JDK.)

Obtain the root certificate of the OBS server (for example, open Internet Explorer
and choose Internet Options > Content > Certificates to export the certificate)
and save it by the name of obs.cer.

Run the %JAVA_HOME%/bin/keytool -import -alias obs -file obs.cer -storepass
changeit -keystore %JAVA_HOME%/jre/lib/security/cacerts command to
import the certificate.

2020-02-26

17

Object Storage Service

Java SDK Developer Guide

4 Initialization

Step 3 Run the %JAVA_HOME%/bin/keytool -list -v -alias obs -storepass changeit -
keystore %JAVA_HOME%/jre/lib/security/cacerts command to view whether

the certificate is successfully imported.

Step 4 Enable server certificate verification

(ObsConfiguration.setValidateCertificate(true)).
----End

4.6 Transparently Transferring the AK and SK

OBS Java SDK provides SecretFlexibleObsClient that supports transparent
transfer of AKs and SKs in API functions. Sample code is as follows:

String endPoint = "https://your-endpoint";

// Create an ObsConfiguration instance.
ObsConfiguration config = new ObsConfiguration();
config.setEndPoint(endPoint);

// Create a SecretFlexibleObsClient instance.

SecretFlexibleObsClient obsClient = new SecretFlexibleObsClient(config);
// Use the instance to access OBS.

String ak1 = "*** Provide your Access Key 1 ***";

String sk1 = "*** Provide your Secret Key 1 ***";

obsClient.listBuckets(ak1, sk1);

String ak2 = "*** Provide your Access Key 2 ***";
String sk2 = "*** Provide your Secret Key 2 ***";
obsClient.listBuckets(ak2, sk2);

// Close obsClient.
obsClient.close();

(11 NOTE

SecretFlexibleObsClient is inherited from ObsClient and can be used as ObsClient.

2020-02-26

18

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

Fault Locating

5.1 Methods

Step 1

Step 2

Step 3

If problems occur when using the OBS Java SDK, you can perform the following
steps to analyze and locate the problems.

Make sure that the latest version of OBS Java SDK is used. Click here to download
the latest version.

Make sure that the logging function of OBS Java SDK is enabled. For details about
how to enable the function, see the Log Analysis section. The recommended log
level is WARN.

Make sure that the program code of the OBS Java SDK complies with General
Examples of ObsClient. All ObsClient APIs are processed with exception handling.
The following is an example code of uploading an object:

ObsClient obsClient = null;
try
{
String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
obsClient = new ObsClient(ak, sk, endPoint);
HeaderResponse response = obsClient.putObject("bucketname", "objectname", new
ByteArraylnputStream("Hello OBS".getBytes()));
// Optional: After the API is successfully called, record the HTTP status code and request ID returned by
the server.
System.out.println(response.getStatusCode());
System.out.println(response.getRequestld());

}
catch (ObsException e)
{

// Recommended: When an exception occurs, record the HTTP status code, server-side error code, and
request ID returned by the server.

System.out.printin("HTTP Code: " + e.getResponseCode());

System.out.println("Error Code:" + e.getErrorCode());

System.outprintln("Request ID:" + e.getErrorRequestld());

// Recommended: When an exception occurs, record the stack information.

e.printStackTrace(System.out);

}
(1 NOTE

You can click here to view the details about ObsException.

2020-02-26

19

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/current/java/en/java.zip

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

Step 4 If an exception occurs when an ObsClient API is called, obtain the HTTP status
code and OBS server-side error code from ObsException or log file, and
compare them to locate the exception cause.

Step 5 If the exception cause cannot be found in step 4, obtain the request ID returned by
the OBS server from ObsException or log file and contact the OBS server O&M
team to locate the cause.

Step 6 If the request ID is unable to be obtained, collect the stack information of
ObsException and contact the OBS client O&M team to locate the cause.

--—-End

5.2 Notable Issues

SignatureDoesNotMatch

HTTP Code: 403
Error Code: SignatureDoesNotMatch

Possible causes are as follows:
1. The SK input into ObsClient initialization is incorrect. Solution: Make sure that
the SK is correct.

2. This problem is caused by a bug in the OBS Java SDK of an earlier version.
Solution: Upgrade the SDK to the latest version.

3. OBS Java SDK 2.1.x versions are incompatible with the dependent library
Apache HttpClient. Solution: Use the libraries of fixed versions: httpcore-4.4.4
and httpclient-4.5.3.

MethodNotAllowed
HTTP Code: 405
Error Code: MethodNotAllowed

This error occurs because a feature on which the ObsClient API depends has not
been rolled out on the requested OBS server. Contact the OBS O&M team for
further confirmation.

BucketAlreadyOwnedByYou

HTTP Code: 409
Error Code: BucketAlreadyOwnedByYou

In OBS, a bucket name must be globally unique. Solution: If this error occurs when
the ObsClient.createBucket is called, check whether the bucket exists. You can
use either of the following methods to check whether a bucket exists:

Method 1 (recommended): Call ObsClient.listBuckets to query the list of all
buckets that you own and check whether the bucket exists.

Method 2: Call ObsClient.headBucket to check whether the bucket exists.

(11 NOTE

ObsClient.headBucket can query only buckets in the current region, while
ObsClient.listBuckets can query buckets in all regions.

2020-02-26 20

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

BucketAlreadyExists
HTTP Code: 409
Error Code: BucketAlreadyExists

In OBS, a bucket name must be globally unique. Solution: If this error occurs when
ObsClient.createBucket is called, it indicates that the bucket has been created by
another user. Use another bucket name and try again.

Connection Timeout

HTTP Code: 408
Caused by: java.net.ConnectException: Connection timed out: connect
at java.net.DualStackPlainSocketimpl.waitForConnect(Native Method)
at java.net.DualStackPlainSocketIimpl.socketConnect(DualStackPlainSocketimpl.java:85)

Possible causes are as follows:
1. The endpoint input into ObsClient initialization is incorrect. Solution: Verify to
make sure that the endpoint is correct.

2. The network between the OBS client and OBS server is abnormal. Solution:
Check the health status of the network.

3. The OBS domain name resolved by DNS is inaccessible. Solution: Contact the
OBS O&M team.

Read/Write Timeout

HTTP Code: 408

Error Code:RequestTimeOut

Caused by: java.net.SocketTimeoutException: timeout
at okio.Okio$4.newTimeoutException(Okio.java:232)
at okio.AsyncTimeout.exit(AsyncTimeout.java:285)
at okio.AsyncTimeout$2.read (AsyncTimeout.java:241)

Possible causes are as follows:
1. The network latency between the OBS client and OBS server is too long.
Solution: Check the health status of the network.

2. The network between the OBS client and OBS server is abnormal. Solution:
Check the health status of the network.

Abnormal Returned Value -1
HTTP Code: -1

Possible causes are as follows:

1. The OBS Java SDK of an earlier version is used and a connection timeout or
read/write timeout occurs. Solution: See the solutions for connection timeout
and read/write timeout.

2. This problem is caused by a bug in the OBS Java SDK of an earlier version.
Solution: Download the latest SDK from here.

3. The server returns an abnormal result. As a result, an unexpected error occurs
when the SDK resolves the returned result. Solution: Obtain the request ID
returned by OBS server from the log and contact the OBS O&M team.
An Error Occurs During Program Startup After SDK Integration

Possible causes are as follows:

2020-02-26 21

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/current/java/en/java.zip

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

1. If the error ClassNotFoundException occurs during the program startup, it is
usually caused by the missing of a third-party dependent library. Solution: Add
the required third-party dependent library of the OBS Java SDK. See the
following table.

Library Name Version ID Description

okhttp 3.11.0 Component for sending
HTTP requests

okio 1.14.0 Component of okhttp

java-xmlbuilder 1.1 Component for
constructing and parsing
XML files

jackson-core 2.9.9 Component for
constructing and parsing
JSON files

jackson-databind 2.9.9 Component of jackson-
core

jackson-annotations 299 Component of jackson-
core

2. If the error NoClassDefFoundError occurs during the startup, it is usually
caused by Java class conflict. Solution: a) Check whether a third-party library
in the running environment contains multiple versions. b) Check whether the
running environment contains the OBS Java SDK software package (esdk-obs-
java-3.x.xjar) of multiple versions.

Unable to Obtain Error Codes from ObsException
Possible causes are as follows:

1. An error is reported when ObsClient.getBucketMetadata or
ObsClient.getObjectMetadata is called. In this scenario, the server does not
return an error code because the request method used in the background is
HEAD. Solution: Call ObsException.getResponseCode to obtain the HTTP
status code to analyze the possible cause. For example, 403 indicates that the
user does not have the access permission, and 404 indicates that the bucket
or object does not exist. If the cause cannot be located, obtain the request ID
returned by the OBS server from ObsException and contact the OBS O&M
team.

2. The IP address of the endpoint obtained after DNS resolution during
ObsClient initialization is not a valid IP address of the OBS server. Solution:
Check whether the endpoint configuration is correct. If the endpoint
configuration is correct, contact the OBS O&M team.

UnknownHostException

Caused by: java.net.UnknownHostException: bucketname.unknowndomain.com
at java.net.Inet6Addressimpl.lookupAllHostAddr(Native Method)
at java.net.InetAddress$1.lookupAllHostAddr(InetAddress.java:901)
at java.net.InetAddress.getAddressesFromNameService(InetAddress.java:1293)

2020-02-26 22

Object Storage Service
Java SDK Developer Guide 5 Fault Locating

Possible causes are as follows:

1. The endpoint input during ObsClient initialization is incorrect. Solution: Verify
to make sure that the endpoint is correct.

2. DNS cannot resolve the OBS domain name. Solution: Contact the OBS O&M
team.

NullPointException

Exception in thread "main" java.lang.NullPointerException
at com.obs.services.internal.RestStorageService.isChame(RestStorageService.java:1213)
at com.obs.services.ObsClient.doActionWithResult(ObsClient.java:2805)

Possible causes are as follows:

1. ObsClient.close is called to close ObsClient and then another ObsClient API is
called. Solution: Call ObsClient.close to release resources only before exiting
the application.

2. This problem is caused by a bug in the OBS Java SDK of an earlier version.
Solution: Download the latest SDK from here.

Connection Leakage

A connection to xxx was leaked. Did you forget to close a response body?

This error occurs when ObsClient.getObject is not properly closed after it is called
to obtain the data flow of the object to be downloaded. Solution: Make sure that
the ObsObject.getObjectContent.close method is called in the finally statement
block to close the connection.

Problem in SDK Version Upgrade

The third-party dependent library of the SDK of an earlier version (2.1.x) is not
completely compatible with that of the new version SDK (3.x). If a program
startup error occurs after the earlier version is upgraded to the new version, see
An Error Occurs During Program Startup After SDK Integration. If the problem
persists, contact the OBS O&M team.

Others

For details, see FAQs.

2020-02-26 23

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/current/java/en/java.zip

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

Bucket Management

6.1 Creating a Bucket

You can call ObsClient.createBucket to create a bucket.

Creating a Bucket in Simple Mode

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Create a bucket.

try{
// The bucket is successfully created.
HeaderResponse response = obsClient.createBucket("bucketname");
System.out.println(response.getRequestld());

}

catch (ObsException e)

{
// Failed to create a bucket.
System.outprintin("HTTP Code: " + e.getResponseCode());
System.out.println("Error Code:" + e.getErrorCode());
System.outprintin("Error Message: " + e.getErrorMessage());

System.outprintln("Request ID:" + e.getErrorRequestld());
System.outprintln("Host ID:" + e.getErrorHostld());

2020-02-26 24

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

(1J NOTE

e Bucket names are globally unique. Ensure that the bucket you create is named
differently from any other bucket.

e A bucket name must comply with the following rules:

° Contains 3 to 63 characters, chosen from lowercase letters, digits, hyphens (-), and
periods (.), and starts with a digit or letter.

e Cannot be an IP-like address.
° Cannot start or end with a hyphen (-) or period (.)
e Cannot contain two consecutive periods (.), for example, my..bucket.

e Cannot contain periods (.) and hyphens (-) adjacent to each other, for example,
my-.bucket or my.-bucket.

e If you create buckets of the same name in a region, no error will be reported and the
bucket properties comply with those set in the first creation request.

e The bucket created in the previous example is of the default ACL (private), in the OBS
Standard storage class, and in the default location where the global domain resides.

Creating a Bucket with Parameters Specified

When creating a bucket, you can specify the ACL, storage class, and location for
the bucket. OBS provides three storage classes for buckets. For details, see 6.11
Setting or Obtaining the Storage Class of a Bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObsBucket obsBucket = new ObsBucket();

obsBucket.setBucketName("bucketname");

// Set the access permission for the bucket to public-read-write. (The default value is private.)
obsBucket.setAcl(AccessControlList. REST CANNED_PUBLIC READ);

// Set the storage class to OBS Cold.

obsBucket.setBucketStorageClass(StorageClassEnum.COLD);

// Set the location.

obsBucket.setLocation("bucketlocation");

// Create a bucket.

try{
// The bucket is successfully created.
HeaderResponse response = obsClient.createBucket(obsBucket);
System.out.println(response.getRequestld());

}

catch (ObsException e)

{
// Failed to create a bucket.
System.out.printin("HTTP Code: " + e.getResponseCode());
System.out.printlin("Error Code:" + e.getErrorCode());
System.outprintln("Error Message: " + e.getErrorMessage());

System.outprintln("Request ID:" + e.getErrorRequestld());
System.out.println("Host ID:" + e.getErrorHostld());

6.2 Listing Buckets

You can call ObsClient.listBuckets to list buckets. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";

2020-02-26 25

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// List buckets.

ListBucketsRequest request = new ListBucketsRequest();

request.setQueryLocation(true);

List<ObsBucket> buckets = obsClient.listBuckets(request);

for(ObsBucket bucket : buckets){
System.out.println("BucketName:" + bucket.getBucketName());
System.out.println("CreationDate:" + bucket.getCreationDate());
System.outprintln("Location:" + bucket.getLocation());

}
(11 NOTE

e Obtained bucket names are listed in the lexicographical order.

e Set ListBucketsRequest.setQueryLocation to true and then you can query the bucket
location when listing buckets.

6.3 Deleting a Bucket

You can call ObsClient.deleteBucket to delete a bucket. Sample code is as
follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Delete a bucket.
obsClient.deleteBucket("bucketname");

(11 NOTE

e Only empty buckets (without objects and part fragments) can be deleted.

e Bucket deletion is a non-idempotence operation and an error will be reported if the to-
be-deleted bucket does not exist.

6.4 Identifying Whether a Bucket Exists

You can call ObsClient.headBucket to identify whether a bucket exists. Sample
code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

boolean exists = obsClient.headBucket("bucketname");

6.5 Obtaining Bucket Metadata

You can call ObsClient.getBucketMetadata to obtain the metadata of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";

2020-02-26 26

Object Storage Service
Java SDK Developer Guide

6 Bucket Management

String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketMetadatalnfoRequest request = new BucketMetadatalnfoRequest("bucketname");
request.setOrigin("http://www.a.com");

// Obtain the bucket metadata.

BucketMetadatalnfoResult result = obsClient.getBucketMetadata(request);

System.outprintln("\t:"
System.outprintln("\t:"
System.outprintln("\t:"
System.outprintln("\t:"
System.outprintln("\t:"
System.outprintln("\t:"

(11 NOTE

+ result.getDefaultStorageClass());
+ result.getAllowOrigin());

+ result.getMaxAge());

+ result.getAllowHeaders());

+ result.getAllowMethods());

+ result.getExposeHeaders());

For details about values of methods, such as
BucketMetadatalnfoResult.getAllowMethods, see the CORS configurations of the bucket.

6.6 Managing Bucket ACLs

A bucket ACL can be configured in three modes:

1. Specify a pre-defined access control policy during bucket creation.

2. Call ObsClient.setBucketAcl to specify a pre-defined access control policy.
3. Call ObsClient.setBucketAcl to set the ACL directly.

The following table lists the five permission types supported by OBS.

Permission

Description Value in OBS Java SDK

READ

A grantee with this permission for | Permission.PERMISSION_
a bucket can obtain the list of READ

objects in and metadata of the
bucket.

A grantee with this permission for
an object can obtain the object
content and metadata.

WRITE

A grantee with this permission for | Permission.PERMISSION_
a bucket can upload, overwrite, WRITE

and delete any object in the
bucket.

This permission is not applicable
to objects.

READ_ACP

A grantee with this permission Permission.PERMISSION_
can obtain the ACL of a bucket or | READ_ACP
object.

A bucket or object owner has this
permission permanently.

2020-02-26

27

https://support.hc.sbercloud.ru/en-us/usermanual/obs/obs_03_0325.html

Object Storage Service
Java SDK Developer Guide

6 Bucket Management

Permission

Description

Value in OBS Java SDK

WRITE_ACP

A grantee with this permission
can update the ACL of a bucket
or object.

A bucket or object owner has this
permission permanently.

A grantee with this permission
can modify the access control
policy and thus the grantee
obtains full access permissions.

Permission.PERMISSION _
WRITE_ACP

FULL_CONTROL

A grantee with this permission for
a bucket has READ, WRITE,
READ_ACP, and WRITE_ACP
permissions for the bucket.

A grantee with this permission for
an object has READ, WRITE,
READ_ACP, and WRITE_ACP
permissions for the object.

Permission.PERMISSION _
FULL_CONTROL

There are five access control policies pre-defined in OBS, as described in the

following table:

Permission

Description

Value in OBS Java SDK

private

The owner of a bucket or object
has the FULL_CONTROL
permission for the bucket or
object. Other users have no
permission to access the bucket
or object.

AccessControlList.REST_C
ANNED_PRIVATE

public-read

If this permission is set for a
bucket, everyone can obtain the
list of objects, multipart uploads,
and object versions in the bucket,
as well as metadata of the
bucket.

If this permission is set for an
object, everyone can obtain the
content and metadata of the
object.

AccessControlList.REST_C
ANNED_PUBLIC_READ

2020-02-26

28

Object Storage Service
Java SDK Developer Guide

6 Bucket Management

Permission

Description

Value in OBS Java SDK

public-read-
write

If this permission is set for a
bucket, everyone can obtain the
object list in the bucket, multipart
uploads in the bucket, metadata
of the bucket; upload objects;
delete objects; initialize multipart
uploads; upload parts; combine
parts; copy parts; and abort
multipart uploads.

If this permission is set for an
object, everyone can obtain the
content and metadata of the
object.

AccessControlList.REST_C

ANNED_PUBLIC_READ_
WRITE

public-read-
delivered

If this permission is set for a
bucket, everyone can obtain the
object list, multipart uploads, and
bucket metadata in the bucket,
and obtain the content and
metadata of the objects in the
bucket.

This permission cannot be set for
objects.

AccessControlList.REST_C
ANNED_PUBLIC_READ D

ELIVERED

public-read-
write-delivered

If this permission is set for a
bucket, everyone can obtain the
object list in the bucket, multipart
uploads in the bucket, metadata
of the bucket; upload objects;
delete objects; initialize multipart
uploads; upload parts; combine
parts; copy parts; abort multipart
uploads; obtain content and
metadata of objects in the
bucket.

This permission cannot be set for
objects.

AccessControlList.REST_C

ANNED_PUBLIC_READ_
WRITE_DELIVERED

Specifying a Pre-defined Access Control Policy During Bucket Creation

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObsBucket obsBucket = new ObsBucket();

obsBucket.setBucketName("bucketname");
// Set the bucket ACL to public-read-write.
obsBucket.setAcl(AccessControlList. REST CANNED_PUBLIC READ_WRITE),

2020-02-26

29

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

// Create a bucket.
obsClient.createBucket(obsBucket);

Setting a Pre-defined Access Control Policy for a Bucket

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the bucket ACL to private.
obsClient.setBucketAcl("bucketname", AccessControlList. REST_CANNED_PRIVATE);

Directly Setting a Bucket ACL

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = new AccessControlList();

Owner owner = new Owner();

owner.setld("ownerid");

acl.setOwner(owner);

// Grant the FULL_CONTROL permission to a specified user.

acl.grantPermission(new CanonicalGrantee("userid"), Permission.PERMISSION_FULL_CONTROL);
// Grant the READ permission to all users.

acl.grantPermission(GroupGrantee.ALL USERS, Permission.PERMISSION_READ);

// Directly set the bucket ACL.

obsClient.setBucketAcl("bucketname", acl);

(1 NOTE

The owner or grantee ID needed in the ACL indicates the account ID, which can be viewed
on the My Credential page of OBS Console.

Obtaining a Bucket ACL

You can call ObsClient.getBucketAcl to obtain the bucket ACL. Sample code is as
follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = obsClient.getBucketAcl("bucketname");
System.outprintln(acl);

6.7 Managing Bucket Policies

Besides bucket ACLs, bucket owners can use bucket policies to centrally control
access to buckets and objects in buckets.

For more information, see Bucket Policy Overview.

2020-02-26

30

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853745.html

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

Setting a Bucket Policy

You can call ObsClient.setBucketPolicy to set a bucket policy. Sample code is as
follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
obsClient.setBucketPolicy("bucketname", "your policy");

(1 NOTE

For details about the format (JSON character string) of bucket policies, see the Object
Storage Service API Reference.

Obtaining a Bucket Policy

You can call ObsClient.getBucketPolicy to obtain a bucket policy. Sample code is
as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

String policy = obsClient.getBucketPolicy("bucketname");
System.outprintln("\t" + policy);

Deleting a Bucket Policy

You can call ObsClient.deleteBucketPolicy to delete a bucket policy. Sample code
is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.deleteBucketPolicy("bucketname");

6.8 Obtaining a Bucket Location

You can call ObsClient.getBucketLocation to obtain the location of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

String location = obsClient.getBucketLocation("bucketname");
System.outprintln("\t:" + location);

(1 NOTE

When creating a bucket, you can specify its location. For details, see Creating a Bucket.

2020-02-26 31

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

6.9 Obtaining Storage Information About a Bucket

The storage information about a bucket includes the used capacity of and the
number of objects in the bucket. You can call ObsClient.getBucketStoragelnfo to
obtain the bucket storage information. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketStoragelnfo storagelnfo = obsClient.getBucketStoragelnfo("bucketname");
System.outprintln("\t" + storagelnfo.getObjectNumber());
System.outprintln("\t" + storagelnfo.getSize());

6.10 Setting or Obtaining a Bucket Quota

Setting a Bucket Quota

You can call ObsClient.setBucketQuota to set the bucket quota. Sample code is
as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the bucket quota to 100 MB.
BucketQuota quota = new BucketQuota(1024 * 1024 * 100Ll);
obsClient.setBucketQuota("bucketname", quota);

(11 NOTE

A bucket quota must be a non-negative integer expressed in bytes. The maximum value is
2631,

Obtaining a Bucket Quota

You can call ObsClient.getBucketQuota to obtain the bucket quota. Sample code
is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketQuota quota = obsClient.getBucketQuota("bucketname");
System.outprintin("\t" + quota.getBucketQuota());

6.11 Setting or Obtaining the Storage Class of a Bucket

OBS allows you to set storage classes for buckets. The storage class of an object
defaults to be that of its residing bucket. Different storage classes meet different
needs for storage performance and costs. There are three types of storage class for
buckets, as described in the following table:

2020-02-26

32

Object Storage Service

Java SDK Developer Guide 6 Bucket Management
Storage Description Value in OBS Java
Class SDK

OBS Standard | Features low access latency and high StorageClassEnum.STA
throughput and is applicable to NDARD

storing frequently-accessed (multiple
times per month) hotspot or small
objects (< 1 MB) requiring quick

response.

OBS Warm Is applicable to storing semi- StorageClassEnum.WA
frequently accessed (less than 12 RM
times a year) data requiring quick
response.

OBS Cold Is applicable to archiving rarely- StorageClassEnum.COL
accessed (once a year) data. D

For more information, see Bucket Storage Classes.

(11 NOTE

The bucket storage class is independent from the storage classes of objects in the bucket. If
the object storage class is not set during object upload, the object storage class is the same
as that of the bucket. However, if the storage class of the bucket is changed, the storage
class of the objects in the bucket does not change accordingly. If the storage class of an
object in a bucket is changed, the storage class of the bucket does not change either.

Setting the Storage Class for a Bucket

You can call ObsClient.setBucketStoragePolicy to set the storage class for a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the storage class to OBS .

BucketStoragePolicyConfiguration storgePolicy = new BucketStoragePolicyConfiguration();
storgePolicy.setBucketStorageClass(StorageClassEnum. WARM);
obsClient.setBucketStoragePolicy("bucketname", storgePolicy);

Obtaining the Storage Class of a Bucket

You can call ObsClient.getBucketStoragePolicy to obtain the storage class of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

2020-02-26

33

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0050937852.html

Object Storage Service
Java SDK Developer Guide 6 Bucket Management

BucketStoragePolicyConfiguration storagePolicy = obsClient.getBucketStoragePolicy("bucketname");
System.outprintln("\t" + storagePolicy.getBucketStorageClass());

2020-02-26 34

Object Storage Service
Java SDK Developer Guide 7 Object Upload

Object Upload

7.1 Object Upload Overview

In OBS, objects are basic data units that users can perform operations on. OBS
Java SDK provides abundant APIs for object upload in the following methods:

e 7.2 Performing a Streaming Upload

e 7.3 Performing a File-Based Upload

e 7.7 Performing a Multipart Upload

e 7.9 Performing an Appendable Upload

e 7.10 Performing a Resumable Upload

e 7.11 Performing a Browser-Based Upload

The SDK supports the upload of objects whose size ranges from 0 KB to 5 GB. For

streaming upload, appendable upload, and file-based upload, data to be uploaded
cannot be larger than 5 GB. If the file is larger than 5 GB, multipart upload (where
each part is smaller than 5 GB) is suitable. Browser-based upload allows files to be
uploaded through a browser.

If the uploaded object can be read by anonymous users. After the upload
succeeds, anonymous users can access the object data through the object URL.
The object URL is in the format of https://bucket name.domain name/directory
level/ object name. If the object resides in the root directory of the bucket, its URL
does not contain directory levels.

7.2 Performing a Streaming Upload

Streaming upload uses java.io.InputStream as the data source of an object. You
can call ObsClient.putObject to upload the data streams to OBS. Sample code is
as follows:

Uploading a Character String (Byte Array)

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";

2020-02-26 35

Object Storage Service
Java SDK Developer Guide 7 Object Upload

String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

String content = "Hello OBS";
obsClient.putObject("bucketname", "objectname", new ByteArraylnputStream(content.getBytes()));

Uploading a Network Stream

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

InputStream inputStream = new URL("http://www.a.com").openStream();

non

obsClient.putObject("bucketname", "objectname", inputStream);

Uploading a File Stream

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

FilelnputStream fis = new FilelnputStream(new File("localfile")); // localfile indicates the path of the local
file to be uploaded. You need to specify the file name.

non

obsClient.putObject("bucketname”, "objectname", fis);

NOTICE

e To upload a local file, you are advised to use file-based upload.

e To upload a large file, you are advised to use multipart upload.
e The content to be uploaded cannot exceed 5 GB.

7.3 Performing a File-Based Upload

File-based upload uses local files as the data source of objects. Sample code is as
follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

non

obsClient.putObject("bucketname", "objectname", new File("localfile")); // localfile indicates the path of
the local file to be uploaded. You need to specify the file name.

(11 NOTE

The content to be uploaded cannot exceed 5 GB.

7.4 Obtaining Upload Progresses

You can call PutObjectRequest.setProgressListener to configure the data
transmission API to obtain upload progresses. Sample code is as follows:

2020-02-26 36

Object Storage Service
Java SDK Developer Guide 7 Object Upload

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

PutObjectRequest request = new PutObjectRequest("bucketname", "objectname");
request.setFile(new File("localfile"));
request.setProgressListener(new ProgressListener() {

@Override
public void progressChanged(ProgressStatus status) {
// Obtain the average upload rate.
System.out.println("AverageSpeed:" + status.getAverageSpeed());
// Obtain the upload progress in percentage.
System.outprintln("TransferPercentage:" + status.getTransferPercentage());
}
N;
// Refresh the upload progress each time 1 MB data is uploaded.
request.setProgressinterval(1024 * 1024L);
obsClient.putObject(request);

(1 NOTE

e You can query the upload progress when uploading an object in streaming, file-based,
multipart, appendable, or resumable mode.

e If the value of ProgressStatus.getTransferPercentage() is -1, the content is uploaded
in streaming mode. In this case, you must set the object length (Content-Length) in the
object property.

7.5 Creating a Folder

There is no folder concept in OBS. All elements in buckets are objects. To create a
folder in OBS is essentially to create an object whose size is 0 and whose name
ends with a slash (/). Such objects have no difference from other objects and can
be downloaded and deleted, except that they are displayed as folders in OBS
Console.

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

final String keySuffixWithSlash = "parent_directory/";
obsClient.putObject("bucketname", keySuffixWithSlash, new ByteArraylnputStream(new byte[0]));

// In the folder, create an object.
obsClient.putObject("bucketname”, keySuffixWithSlash + "objectname", new ByteArraylnputStream("Hello
OBS".getBytes()));

(11 NOTE

e To create a folder in OBS is to create an object whose size is 0 and whose name ends
with a slash (/), in essential.

e To create a multi-level folder, you only need to create the folder with the last level. For
example, if you want to create a folder named src1/src2/src3/, create it directly, no
matter whether the src1/ and src1/src2/ folders exist.

2020-02-26

37

Object Storage Service
Java SDK Developer Guide

7 Object Upload

7.6 Setting Object Properties

You can set properties for an object when uploading it. Object properties include
the object length, MIME type, MD5 value (for verification), storage class, and

customized metadata. You can set properties for an object that is being uploaded
in streaming, file-based, or multipart mode or when copying the object.

The following table describes object properties.

Property Name

Description

Default Value

Content-Length

Indicates the object length. If the
object length exceeds the flow or
file length, the object will be
truncated.

Actual length of the
stream or file

Content-Type

Indicates the MIME type of the
object, which defines the type
and network code of the object
as well as in which mode and
coding will the browser read the
object.

application/octet-stream

Content-MD5

Indicates the base64-encoded
digest of the object data. It is
provided to the OBS server to
verify data integrity.

None

Storage Class

Indicates the storage class of the
object. Different storage classes
meet different needs for storage
performance and costs. The value
defaults to be the same as the
object's residing bucket and can
be changed.

None

Customized
metadata

Indicates the user-defined
description of properties of the
object uploaded to the bucket. It
is used to facilitate the
customized management on the
object.

None

Setting the Length for an Object

You can call ObjectMetadata.setContentLength to set the length for an object.

Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
// Create an instance of ObsClient.

2020-02-26

38

Object Storage Service
Java SDK Developer Guide 7 Object Upload

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectMetadata metadata = new ObjectMetadata();
metadata.setContentLength(1024 * 1024L);// 1 MB
obsClient.putObject("bucketname", "objectname", new File("localfile"), metadata);

Setting the MIME Type for an Object

You can call ObjectMetadata.setContentType to set the MIME type for an object.
Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload an image.

ObjectMetadata metadata = new ObjectMetadata();
metadata.setContentType("image/jpeg");

obsClient.putObject("bucketname", "objectname.jpg", new File("localimage.jpg"), metadata);

(1J NOTE

If this property is not specified, the SDK will automatically identify the MIME type according
to the name suffix of the uploaded object. For example, if the name suffix of an object
is .xml (.html), the object will be identified as an application/xml (text/html) file.

Setting the MD5 Value for an Object

You can call ObjectMetadata.setContentMd5 to set the MD5 value for an object.
Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload an image.

ObjectMetadata metadata = new ObjectMetadata();

metadata.setContentMd5("your md5 which should be encoded by base64");
obsClient.putObject("bucketname", "objectname", new File("localimage.jpg"), metadata);

(1] NOTE

e The MD?5 value of an object must be a base64-encoded digest.

e The OBS server will compare this MD5 value with the MD5 value obtained by object
data calculation. If the two values are not the same, the upload fails with HTTP status
code 400 returned.

e [f the MD5 value is not specified, the OBS server will skip MD5 value verification.
e You can call ObsClient.base64Md5 to calculate the Content-MD5 header directly.

Setting the Storage Class for an Object

You can call ObjectMetadata.setObjectStorageClass to set the storage class for
an object. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

2020-02-26

39

Object Storage Service
Java SDK Developer Guide 7 Object Upload

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectMetadata metadata = new ObjectMetadata();

// Set the storage class of the object to OBS Warm.
metadata.setObjectStorageClass(StorageClassEnum. WARM);
obsClient.putObject("bucketname", "objectname", new File("localfile"), metadata);

(11 NOTE

e If you have not set the storage class for an object, the storage class of the object will be
the same as that of its residing bucket.

e OBS provides objects with three storage classes which are consistent with the storage
classes provided for buckets.

e Before downloading a Cold object, you must restore it.

Customizing Metadata for an Object

You can call ObjectMetadata.addUserMetadata to customize metadata for an
object. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectMetadata metadata = new ObjectMetadata();
metadata.addUserMetadata("property1", "property-value1");
metadata.getMetadata().put("property2", "property-value2");
obsClient.putObject("bucketname", "objectname", new File("localfile"), metadata);

(11 NOTE

e In the preceding code, two pieces of metadata named property1 and property2 are
customized and their respective values are set to property-value1 and property-value2.

e An object can have multiple pieces of metadata. The total metadata size cannot exceed
8 KB.

e The customized object metadata can be obtained by using
ObsClient.getObjectMetadata. For details, see Obtaining Object Metadata.

e When you call ObsClient.getObject to download an object, its customized metadata
will also be downloaded.

7.7 Performing a Multipart Upload

To upload a large file, multipart upload is recommended. Multipart upload is
applicable to many scenarios, including:
e Files to be uploaded are larger than 100 MB.

e The network condition is poor. Connection to the OBS server is constantly
down.

e Sizes of files to be uploaded are uncertain.

Multipart upload has the following advantages:

e Improving throughput: You can upload parts in parallel to improve
throughput.

2020-02-26

40

Object Storage Service
Java SDK Developer Guide 7 Object Upload

Step 1
Step 2
Step 3

e Quick recovery from any network failures: Small-size parts can minimize the
impact of failed uploading caused by network errors.

e Convenient suspension and resuming of object uploading: You can upload
parts at any time. A multipart upload does not have a validity period. You
must explicitly complete or cancel the multipart upload.

e Starting uploading before knowing the size of an object: You can upload an
object while creating it.

Multipart upload consists of three phases:

Initialize a multipart upload (ObsClient.initiateMultipartUpload).

Upload parts one by one or concurrently (ObsClient.uploadPart).

Combine parts (ObsClient.completeMultipartUpload) or abort the multipart
upload (ObsClient.abortMultipartUpload).

--—-End

Initializing a Multipart Upload

Before upload, you need to notify OBS of initializing a multipart upload. This
operation will return an upload ID (globally unique identifier) created by the OBS
server to identify the multipart upload. You can use this upload ID to initiate
related operations, such as aborting a multipart upload, listing multipart uploads,
and listing uploaded parts.

You can call ObsClient.initiateMultipartUpload to initialize a multipart upload.

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

InitiateMultipartUploadRequest request = new InitiateMultipartUploadRequest("bucketname",
"objectname");

ObjectMetadata metadata = new ObjectMetadata();

metadata.addUserMetadata("property", "property-value");
metadata.setContentType("text/plain");

request.setMetadata(metadata);

InitiateMultipartUploadResult result = obsClient.initiateMultipartUpload(request);

String uploadld = result.getUploadld();
System.outprintin("\t" + uploadld);

(11 NOTE

e Call InitiateMultipartUploadRequest to specify the name and owning bucket of the
uploaded object.

e In InitiateMultipartUploadRequest, you can specify the MIME type, storage class, and
customized metadata for the object.

e The upload ID of the multipart upload returned by
InitiateMultipartUploadResult.getUploadId will be used in follow-up operations.

Uploading a Part

After initializing a multipart upload, you can specify the object name and upload
ID to upload a part. Each upload part has a part number (ranging from 1 to

2020-02-26

41

Object Storage Service
Java SDK Developer Guide 7 Object Upload

10000). For parts with the same upload ID, their part numbers are unique and
identify their comparative locations in the object. If you use the same part number
to upload two parts, the later one being uploaded will overwrite the former.
Except for the part last uploaded whose size ranges from 0 to 5 GB, sizes of the
other parts range from 100 KB to 5 GB. Parts are uploaded in random order and
can be uploaded through different processes or machines. OBS will combine them
into the object based on their part numbers.

You can call ObsClient.uploadPart to upload a part.

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

String uploadld = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

List<PartEtag> partEtags = new ArrayList<PartEtag>();

// Upload the first part.

UploadPartRequest request = new UploadPartRequest("bucketname", "objectname");
// Set an upload ID.

request.setUploadld(uploadld);

// Set a part number, which ranges from 1 to 10000.

request.setPartNumber(1);

// Set the large file to be uploaded.

request.setFile(new File("localfile"));

// Set the part size.

request.setPartSize(5 * 1024 * 1024L);

UploadPartResult result = obsClient.uploadPart(request);
partEtags.add(new PartEtag(result.getEtag(), result.getPartNumber()));

// Upload the second part.

request = new UploadPartRequest("bucketname"”, "objectname");
// Set an upload ID.

request.setUploadld(uploadld);

// Set the part number.

request.setPartNumber(2);

// Set the large file to be uploaded.

request.setFile(new File("localfile"));

// Set the offset of the second part.

request.setOffset(5 * 1024 * 1024L);

// Set the part size.

request.setPartSize(5 * 1024 * 1024L);

result = obsClient.uploadPart(request);

partEtags.add(new PartEtag(result.getEtag(), result.getPartNumber()));

2020-02-26

42

Object Storage Service
Java SDK Developer Guide 7 Object Upload

(1J NOTE

Combining Parts

Except the part last uploaded, other parts must be larger than 100 KB. Part sizes will not
be verified during upload because which one is last uploaded is not identified until parts
are combined.

OBS will return ETags (MD5 values) of the received parts to users.

To ensure data integrity, set UploadPartRequest.setAttachMd5 to true to make the
SDK automatically calculate the MD5 value (valid only when the data source is a local
file) of each part and add the MD5 value to the Content-MD5 request header. The OBS
server will compare the MD5 value contained by each part and that calculated by the
SDK to verify the data integrity.

You can call UploadPartRequest.setContentMd5 to set the MD5 value of the uploaded
data directly. If this value is set, the UploadPartRequest.setAttachMd5 parameter
becomes ineffective.

Part numbers range from 1 to 10000. If the part number you set is out of this range,
OBS will return error 400 Bad Request.

The minimum part size supported by an OBS 3.0 bucket is 100 KB, and the minimum
part size supported by an OBS 2.0 bucket is 5 MB.

After all parts are uploaded, call the API for combining parts to generate the
object. Before this operation, valid part numbers and ETags of all parts must be
sent to OBS. After receiving this information, OBS verifies the validity of each part
one by one. After all parts pass the verification, OBS combines these parts to form
the final object.

You can call ObsClient.completeMultipartUpload to combine parts.

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

String uploadld = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

List<PartEtag> partEtags = new ArrayList<PartEtag>();
// First part

PartEtag part1 = new PartEtag();
part1.setPartNumber(1);

partl.seteTag("etag1");

partEtags.add(part1);

// Second part

PartEtag part2 = new PartEtag();
part2.setPartNumber(2);
part2.setEtag("etag2");
partEtags.add(part2);

CompleteMultipartUploadRequest request = new CompleteMultipartUploadRequest("bucketname",
"objectname", uploadld, partEtags);

obsClient.completeMultipartUpload(request);

(11 NOTE

In the preceding code, partEtags indicates the list of part numbers and ETags of
uploaded parts.

Part numbers can be inconsecutive.

2020-02-26

43

Object Storage Service
Java SDK Developer Guide 7 Object Upload

Concurrently Uploading Parts

Multipart upload is mainly used for large file upload or when the network
condition is poor. The following sample code shows how to concurrently upload
parts in a multipart upload:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

final String bucketName = "bucketname";

final String objectKey = "objectname";

// Create an instance of ObsClient.

final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Initialize the thread pool.
ExecutorService executorService = Executors.newfixedThreadPool(20);
final File largeFile = new File("localfile");

// Initialize the multipart upload.
InitiateMultipartUploadRequest request = new InitiateMultipartUploadRequest(bucketName, objectKey);
InitiateMultipartUploadResult result = obsClient.initiateMultipartUpload(request);

final String uploadld = result.getUploadId();
System.outprintln("\t"+ uploadld + "\n");

// Set the part size to 100 MB.
long partSize = 100 * 1024 * 1024L;
long fileSize = largeFile.length();

// Calculate the number of parts need to be uploaded.
long partCount = fileSize % partSize == 0 ? fileSize / partSize : fileSize / partSize + 1;

final List<PartEtag> partEtags = Collections.synchronizedList(new ArrayList<PartEtag>());

// Start uploading parts concurrently.
for (inti =0; i < partCount; i++)
{
// Start position of parts in the file
final long offset = i * partSize;
// Part size
final long currPartSize = (i + 1 == partCount) ? fileSize - offset : partSize;
// Part number
final int partNumber =i + 1;
executorService.execute(new Runnable()
{
@Override
public void run()
{
UploadPartRequest uploadPartRequest = new UploadPartRequest();
uploadPartRequest.setBucketName (bucketName);
uploadPartRequest.setObjectKey(objectKey);
uploadPartRequest.setUploadld(uploadld);
uploadPartRequest.setFile(largeFile);
uploadPartRequest.setPartSize(currPartSize);
uploadPartRequest.setOffset(offset);
uploadPartRequest.setPartNumber(partNumber);

UploadPartResult uploadPartResult;
try
{
uploadPartResult = obsClient.uploadPart(uploadPartRequest);
System.outprintin("Part#" + partNumber + " done\n");
partEtags.add(new PartEtag(uploadPartResult.getEtag(), uploadPartResult.getPartNumber()));

catch (ObsException e)
{
e.printStackTrace();
}
}

2020-02-26 44

Object Storage Service
Java SDK Developer Guide 7 Object Upload

b
}

// Wait until the upload is complete.
executorService.shutdown();
while ('executorService.isTerminated())
{

try

{

executorService.awaitTermination(5, TimeUnit. SECONDS);

}

catch (InterruptedException e)

{
e.printStackTrace();

}
}
// Combine parts.
CompleteMultipartUploadRequest completeMultipartUploadRequest = new
CompleteMultipartUploadRequest(bucketName, objectKey, uploadld, partEtags);
obsClient.completeMultipartUpload(completeMultipartUploadRequest);

(11 NOTE

When uploading a large file, use UploadPartRequest.setOffset and
UploadPartRequest.setPartSize to determine the start and end positions of each part.

Aborting a Multipart Upload

After a multipart upload is aborted, you cannot use its upload ID to perform any
operation and the uploaded parts will be deleted by OBS.

When an object is being uploaded in multi-part mode or an object fails to be
uploaded, parts are generated in the bucket. These parts occupy your storage
space. You can cancel the multi-part uploading task to delete unnecessary parts,
thereby saving the storage space.

You can call ObsClient.abortMultipartUpload to abort a multipart upload.

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

String uploadld = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AbortMultipartUploadRequest request = new AbortMultipartUploadRequest("bucketname", "objectname",
uploadid);

obsClient.abortMultipartUpload(request);

Listing Uploaded Parts

You can call ObsClient.listParts to list successfully uploaded parts of a multipart
upload.

The following table describes the parameters involved in this API.

2020-02-26 45

Object Storage Service
Java SDK Developer Guide

7 Object Upload

Parameter Description Method in OBS Java
SDK
bucketName Bucket name ListPartsRequest.setBuck
etName
key Object name ListPartsRequest.setKey
uploadld Upload ID, which globally ListPartsRequest.setUplo
identifies a multipart upload. | adld
The value is in the returned
result of
ObsClient.initiateMultipar-
tUpload.
maxParts Maximum number of parts ListPartsRequest.setMaxP
that can be listed per page. arts
partNumberMarker | Part number after which ListPartsRequest.setPart

listing uploaded parts begins.

Only parts whose part
numbers are larger than this
value will be listed.

NumberMarker

e Listing parts in simple mode

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

String uploadld = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

//List the uploaded parts. uploadld is obtained frominitiateMultipartUpload.

ListPartsRequest request = new ListPartsRequest("bucketname", "objectname");
request.setUploadld(uploadld);
ListPartsResult result = obsClient.listParts(request);

for(Multipart part : result.getMultipartList()){
// Part number, specified when uploading
System.outprintln("\t"+part.getPartNumber());

// Part size

System.outprintln("\t"+part.getSize());

// Part ETag

System.outprintln("\t"+part.getEtag());
// Time when the part was last uploaded
System.outprintln("\t"+part.getLastModified());

}
(11 NOTE

e Information about a maximum of 1,000 parts can be listed each time. If a task of the
specific upload ID contains more than 1,000 parts and ListPartsResult.isTruncated is
true in the returned result, not all parts are returned. In such cases, you can use
ListPartsResult.getNextPartNumberMarker to obtain the start position for next listing.

e If you want to obtain all parts involved in a specific upload ID, you can use the paging

mode for listing.

e Listing all parts

2020-02-26

46

Object Storage Service
Java SDK Developer Guide

7 Object Upload

If the number of parts of a multipart upload is larger than 1,000, you can use the
following sample code to list all parts.

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

String uploadld = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// List the uploaded parts. uploadld is obtained from initiateMultipartUpload.
ListPartsRequest request = new ListPartsRequest("bucketname", "objectname");
request.setUploadld(uploadld);

ListPartsResult result;

do{

result = obsClient.listParts(request);

for(Multipart part : result.getMultipartList()){

// Part number, specified when uploading
System.outprintln("\t"+part.getPartNumber());

// Part size

System.outprintln("\t"+part.getSize());

// Part ETag

System.outprintln("\t"+part.getEtag());
// Time when the part was last uploaded
System.outprintln("\t"+part.getLastModified());

}

request.setPartNumberMarker(Integer.parse/nt(result.getNextPartNumberMarker()));
Jwhile(result.isTruncated());

Listing Multipart Uploads

You can call ObsClient.listMultipartUploads to list multipart uploads. The
following table describes parameters involved in ObsClient.listMultipartUploads.

names involved in multipart
uploads. If the object name
contains the delimiter parameter,
the character string from the first
character to the first delimiter in
the object name is grouped under
a single result element,
commonPrefix. (If a prefix is
specified in the request, the prefix
must be removed from the object
name.)

Parameter Description Method in OBS Java
SDK
bucketName Bucket name ListMultipartUploadsRe-
quest.setBucketName
prefix Prefix that the object names in the | ListMultipartUploadsRe-
multipart uploads to be listed must | quest.setPrefix
contain
delimiter Character used to group object ListMultipartUploadsRe-

quest.setDelimiter

2020-02-26

47

Object Storage Service

Java SDK Developer Guide 7 Object Upload
Parameter Description Method in OBS Java
SDK
maxUploads Maximum number of returned ListMultipartUploadsRe-
multipart uploads. The value quest.setMaxUploads

ranges from 1 to 1000. If the value
is not in this range, 1,000 multipart
uploads are returned by default.

keyMarker Object name to start with when ListMultipartUploadsRe-
listing multipart uploads quest.setKeyMarker

uploadldMarke | Upload ID after which the ListMultipartUploadsRe-

r multipart upload listing begins. It quest.setUploadldMarker

is effective only when used with
keyMarker so that multipart
uploads after uploadldMarker of

keyMarker will be listed.

e Listing multipart uploads in simple mode
String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

String uploadld = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListMultipartUploadsRequest request = new ListMultipartUploadsRequest("bucketname");

MultipartUploadListing result = obsClient.listMultipartUploads(request);

for(MultipartUpload upload : result.getMultipartTaskList()){
System.outprintin("\t" + upload.getUploadId());
System.outprintin("\t" + upload.getObjectKey());
System.outprintin("\t" + upload.getlInitiatedDate());

}
(11 NOTE

e Information about a maximum of 1,000 multipart uploads can be listed each time. If a
bucket contains more than 1,000 multipart uploads and
MultipartUploadListing.isTruncated is true, not all uploads are listed. In such cases,
you can use MultipartUploadListing.getNextKeyMarker and
MultipartUploadListing.getNextUploadldMarker to obtain the start position for next
listing.

e If you want to obtain all multipart uploads in a bucket, you can list them in paging
mode.

e Listing all multipart uploads in paging mode

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

String uploadld = "upload id from initiateMultipartUpload";
// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListMultipartUploadsRequest request = new ListMultipartUploadsRequest("bucketname");
MultipartUploadListing result;

do{
result = obsClient.listMultipartUploads(request);

2020-02-26

48

Object Storage Service
Java SDK Developer Guide 7 Object Upload

for(MultipartUpload upload : result.getMultipartTaskList()){
System.outprintln("\t" + upload.getUploadId());
System.outprintln("\t" + upload.getObjectKey());
System.outprintln("\t" + upload.getinitiatedDate());

}

request.setKeyMarker (result.getNextKeyMarker());

request.setUploadldMarker(result.getNextUploadldMarker());

Jwhile(result.isTruncated());

7.8 Configuring Lifecycle Management

When uploading an object or initializing a multipart upload, you can directly set
the expiration time for the object. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

PutObjectRequest request = new PutObjectRequest ("bucketname", "objectkey");

request.setFile(new File("localfile")); // localfile indicates the path of the local file to be uploaded. You
need to specify the file name.

// When uploading an object, set the object to expire after 30 days.

request.setExpires(30);

obsClient.putObject(request);

InitiateMultipartUploadRequest request2 = new InitiateMultipartUploadRequest("bucketname",
"objectname");

// When initializing a multipart upload, set the object to expire 60 days after combination.
request2.setExpires(60);

obsClient.initiateMultipartUpload(request);

(1 NOTE
e The previous mode specifies the time duration in days after which an object will expire.

The OBS server automatically clears expired objects.

e The object expiration time set in the preceding method takes precedence over the
bucket lifecycle rule.

7.9 Performing an Appendable Upload

Appendable upload allows you to upload an object in appendable mode and then
append data to the object. You can call ObsClient.appendObject to perform an
appendable upload. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload an object in appendable mode.

AppendObjectRequest request = new AppendObjectRequest();
request.setBucketName("bucketname");
request.setObjectKey("objectname");

request.setPosition(0);

request.setinput(new ByteArraylnputStream("Hello OBS".getBytes()));
AppendObjectResult result = obsClient.appendObject(request);

// Append data to the object.

2020-02-26

49

Object Storage Service
Java SDK Developer Guide 7 Object Upload

request.setPosition(result.getNextPosition());
request.setinput(new ByteArraylnputStream("Hello OBS Again".getBytes()));
result = obsClient.appendObject(request);

System.out.println("NextPosition:" + result.getNextPosition());

System.outprintln("Etag:" + result.getEtag());

// Use the API for obtaining object properties to get the start position for next appending.
ObjectMetadata metadata = obsClient.getObjectMetadata("bucketname", "objectname");
System.out.println("NextPosition from metadata:" + metadata.getNextPosition());

(1 NOTE

e Objects uploaded using ObsClient.putObiject, referred to as normal objects, can
overwrite objects uploaded using ObsClient.appendObiject, referred to as appendable
objects. Data cannot be appended to an appendable object anymore once the object
has been overwritten by a normal object.

e When you upload an object for the first time in appendable mode, an exception will be
thrown (status code 409) if a normal object with the same name exists.

e The ETag returned for an appendable upload is the ETag for the uploaded content,
rather than that of the whole object.

e Data appended each time can be up to 5 GB, and 10,000 times of appendable uploads
can be performed on a single object.

e After an appendable upload is successful, you can call
AppendObjectResult.getNextPosition or use the ObsClient.getObjectMetadata API
to get the start position for next appending.

7.10 Performing a Resumable Upload

Uploading large files often fails due to poor network conditions or program
breakdowns. It is a waste of resources to restart the upload process upon an
upload failure, and the restarted upload process may still suffer from the unstable
network. To resolve such issues, you can use the API for resumable upload, whose
working principle is to divide the to-be-uploaded file into multiple parts and
upload them separately. The upload result of each part is recorded in a checkpoint
file in real time. Only when all parts are successfully uploaded, the result
indicating a successful upload will be returned. Otherwise, an exception is thrown
to remind you of calling the APl again for re-uploading. Based on the upload
status of each part recorded in the checkpoint file, the re-uploading will upload
the parts failed to be uploaded previously, instead of uploading all parts. By virtue
of this, resources are saved and efficiency is improved.

You can call ObsClient.uploadFile to perform a resumable upload. The following
table describes the parameters involved in this API.

Parameter | Description Method in OBS Java
SDK

bucketNam | (Mandatory) Bucket name UploadFileRequest.setBu

e cketName

objectKey (Mandatory) Object name UploadFileRequest.setOb
jectKey

uploadFile | (Mandatory) Local file to be uploaded | UploadFileRequest.setUp
loadFile

2020-02-26

50

Object Storage Service

Java SDK Developer Guide

7 Object Upload

Parameter | Description Method in OBS Java

SDK
partSize Part size, in bytes. The value ranges UploadFileRequest.setPa
from 100 KB to 5 GB and defaults to 9 | rtSize
MB.
taskNum Maximum number of parts that can be | UploadFileRequest.setTa

concurrently uploaded. The default skNum

value is 1.

enableChec | Whether to enable the resumable UploadFileRequest.setEn

kpoint upload mode. The default value is ableCheckpoint
false, which indicates that this mode is
disabled.
checkpoint | File used to record the upload UploadFileRequest.setCh

File progress. This parameter is effective
only in the resumable upload mode. If
the value of this parameter is null, the
file will be in the same directory as the
local file to be uploaded.

eckpointFile

objectMeta | Object properties UploadFileRequest.setOb
data jectMetadata

enableChec | Whether to verify the content of the
kSum to-be-uploaded file. This parameter is
effective only in the resumable upload
mode. The default value is false,
which indicates that the content will
not be verified.

UploadFileRequest.setEn
ableCheckSum

progressList | Configure the data transmission
ener listener to obtain upload progresses.

UploadFileRequest.setPr
ogressListener

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

UploadFileRequest request = new UploadFileRequest("bucketname"”, "obsjectKey");
// Set the large file to be uploaded. localfile is the path of the local file to be uploaded. You need to specify
the file name.
request.setUploadFile("localfile");
// Set the maximum number of parts that can be concurrently uploaded.
request.setTaskNum(5);
// Set the part size to 10 MB.
request.setPartSize(10 * 1024 * 1024);
// Enable resumable upload.
request.setEnableCheckpoint(true);
try{
// Perform a resumable upload.
CompleteMultipartUploadResult result = obsClient.uploadFile(request);

2020-02-26

51

Object Storage Service
Java SDK Developer Guide 7 Object Upload

}catch (ObsException e) {
// When an exception occurs, you can call the API for resumable upload again to perform re-uploading.
}

(11 NOTE

e The API for resumable upload, which is implemented based on multipart upload, is an
encapsulated and enhanced version of multipart upload.

e This API saves resources and improves efficiency upon the re-upload, and speeds up the
upload process by concurrently uploading parts. Because this API is invisible to users,
users are unaware of internal service details, such as the creation and deletion of
checkpoint files, division of objects, and concurrent upload of parts.

e The default value of the enableCheckpoint parameter is false, which indicates that the
resumable upload mode is disabled. In such cases, this APl degrades to the simple
encapsulation of multipart upload, and no checkpoint file will be generated.

e checkpointFile and enableCheckSum are effective only when enableCheckpoint is
true.

7.11 Performing a Browser-Based Upload

Step 1

Step 2
Step 3
Step 4

Performing a browser-based upload is to upload objects to a specified bucket in
HTML form. The maximum size of an object is 5 GB.

You can call ObsClient.createPostSignature to generate request parameters for a
browser-based upload. You can use code to simulate a browser-based upload. For
details, see PostObjectSample. You can also perform a browser-based upload as
follows: The procedure is as follows:

Call ObsClient.createPostSignature to generate request parameters for
authentication.

Prepare an HTML form page.
Enter the request parameters in the HTML page.
Select a local file to and upload it in browser-based mode.

--—-End

(11 NOTE

There are two request parameters generated:
e policy, which corresponds to the policy field in the form
e signature, which corresponds to the signature field in the form

The following sample code shows how to generate the request parameters in a
browser-based upload.

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

PostSignatureRequest request = new PostSignatureRequest();

// Fill in parameters in the form.

Map<String, Object> formParams = new HashMap<String, Object>();
// Set the object ACL to public-read.

2020-02-26

52

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/PostObjectSample.zip

Object Storage Service
Java SDK Developer Guide

7 Object Upload

formParams.put("x-obs-acl", "public-read");
// Set the MIME type for the object.
formParams.put("content-type", "text/plain");

request.setFormParams(formParams);

// Set the validity period for the browser-based upload request, in seconds.
request.setExpires(3600);

PostSignatureResponse response = obsClient.createPostSignature(request);

// Obtain the request parameters.
System.outprintln("\t" + response.getPolicy());
System.outprintln("\t" + response.getSignature());

Code of an HTML form example is as follows:

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" [>
</head>

<body>

<form action="http.//bucketname.your-endpoint/” method="post" enctype="multipart/form-data">

Object key

<I-- Object name -->

<input type="text" name="key" value="objectname" [>

<p>

ACL

<!-- Object ACL -->

<input type="text" name="x-obs-acl" value="public-read" [>
<p>

Content-Type

<I-- Object MIME type -->

<input type="text" name= "content-type" value= "text/plain" |>
<p>

<!-- Base64 code of the policy -->

<input type="hidden" name="policy" value= "*** Provide your policy ***" [>
<l-- AK -->

<input type="hidden" name="AccessKeyld" value="*** Provide your access key **'|>

<!-- Signature information -->

<input type="hidden" name="signature” value="*** Provide your signature ***"|>

<input name="file" type="file" |>

<input name="submit" value="Upload" type="submit" |>
</form>

</body>

</html>

(11 NOTE

e Values of policy and signature in the HTML form are obtained from the returned result

of ObsClient.createPostSignature.

e You can directly download the HTML form example: PostDemo.

2020-02-26

53

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/PostDemo.zip

Object Storage Service
Java SDK Developer Guide 8 Object Download

Object Download

8.1 Object Download Overview

OBS Java SDK provides abundant APIs for object download in the following
methods:

e 8.2 Performing a Streaming Download
e 8.3 Performing a Partial Download
e 8.9 Performing a Resumable Download

You can call ObsClient.getObject to download an object.

8.2 Performing a Streaming Download

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObsObject obsObject = obsClient.getObject("bucketname", "objectname");

// Read the object contents.
System.outprintln("Object content:");
InputStream input = obsObject.getObjectContent();
byte[] b = new byte[1024];
ByteArrayOutputStream bos = new ByteArrayOutputStream();
int len;
while ((len=input.read(b)) !=-1){
bos.write(b, 0, len);

}

System.outprintln(new String(bos.toByteArray()));
bos.close();
input.close();

2020-02-26

54

Object Storage Service
Java SDK Developer Guide 8 Object Download

(10 NOTE
e After ObsClient.getObject is called, an instance of ObsObject will be returned. This
instance contains the residing bucket, name, properties, and input streams of the object.

e You can perform operations on the input streams of an object to read and write the
object contents to a local file or to the memory.

NOTICE

Object input streams obtained by ObsObject.getObjectContent must be closed
explicitly. Otherwise, resource leakage occurs.

8.3 Performing a Partial Download

When only partial data of an object is required, you can download data falling
within a specific range. If the specified range is 0 to 1000, data at the Oth to the
1000th bytes, 1001 bytes in total, will be returned. If the specified range is invalid,
data of the whole object will be returned. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

GetObjectRequest request = new GetObjectRequest("bucketname", "objectname");
// Specify the start and end positions.

request.setRangeStart(0L);

request.setRangeEnd(1000L);

ObsObject obsObject = obsClient.getObject(request);

// Obtain data.
byte[] buf = new byte[1024];
InputStream in = obsObject.getObjectContent();
for (intn=0;n'=-1;) {
n = in.read(buf, 0, buflength);
}

in.close();
(11 NOTE

e If the specified range is invalid (because the start or end position is set to a negative
integer or the range is larger than the object length), data of the whole object will be
returned.

e This download method also can be used to concurrently download parts of a large
object. For details about the sample code, see ConcurrentDownloadObjectSample.

8.4 Obtaining Download Progresses

You can call GetObjectRequest.setProgressinterval to configure the data
transmission interface to obtain download progresses. Sample code is as follows:
String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

2020-02-26 55

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/sample/java/ConcurrentDownloadObjectSample.zip

Object Storage Service
Java SDK Developer Guide

8 Object Download

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

GetObjectRequest request = new GetObjectRequest("bucketname", "objectname");
request.setProgressListener(new ProgressListener() {

@Override
public void progressChanged(ProgressStatus status) {
// Obtain the average download rate.
System.out.println("AverageSpeed:" + status.getAverageSpeed());
// Obtain the download progress in percentage.
System.outprintln("TransferPercentage:" + status.getTransferPercentage());
}
»;
// Refresh the upload progress each time 1 MB data is uploaded.
request.setProgressinterval(1024 * 1024L);
ObsObject obsObject = obsClient.getObject(request);

// Read the object contents.
System.outprintln("Object content:");
InputStream input = obsObject.getObjectContent();
byte[] b = new byte[1024];
ByteArrayOutputStream bos = new ByteArrayOutputStream();
int len;
while ((len=input.read(b)) !=-1){
bos.write(b, 0, len);
}

System.outprintln(new String(bos.toByteArray()));
bos.close();
input.close();

(1 NOTE

You can obtain the download progress when downloading an object in
or resumable mode.

8.5 Performing a Conditioned Download

When downloading an object, you can specify one or more cond

streaming, partial,

itions. Only when

the conditions are met, the object will be downloaded. Otherwise, an exception

will be thrown and the download will fail.

You can set the following conditions.

-Since this parameter; otherwise, an
exception is thrown.

Parameter | Description Method in OBS Java
SDK
If-Modified- | Returns the object if it is modified GetObjectRequest.setlfM
Since after the time specified by this odifiedSince
parameter; otherwise, an exception is
thrown.
If- Returns the object if it remains GetObjectRequest.setlfU

Unmodified | unchanged since the time specified by | nmodifiedSince

2020-02-26

56

Object Storage Service
Java SDK Developer Guide

8 Object Download

Parameter | Description Method in OBS Java
SDK
If-Match Returns the source object if its ETag is | GetObjectRequest.setlfM
the same as the one specified by this atchTag
parameter; otherwise, an exception is
thrown.
If-None- Returns the source object if its ETag is | GetObjectRequest.setlfN
Match different from the one specified by oneMatchTag
this parameter; otherwise, an
exception is thrown.
(1 NOTE

e The ETag of an object is the MD5 check value of the object.

e If a request includes If-Unmodified-Since or If-Match and the specified condition is not
met, 412 Precondition Failed will be returned.

e If a request includes If-Modified-Since or If-None-Match, and the specified condition is
not met, 304 Not Modified will be returned.

Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

GetObjectRequest request = new GetObjectRequest("bucketname", "objectname");
request.setRangeStart(0l);
request.setRangeEnd(10001);

request.setlifModifiedSince(new SimpleDateFormat("yyyy-MM-dd").parse("2016-01-01"));
ObsObject obsObject = obsClient.getObject(request);

obsObject.getObjectContent().close();

8.6 Rewriting Response Headers

When downloading an object, you can rewrite some HTTP/HTTPS response
headers. The following table lists rewritable response headers.

Paramete | Description Method in OBS Java

r SDK

contentTy | Rewrites Content-Type in HTTP/HTTPS | ObjectRepleaceMetada-

pe responses. ta.setContentType

contentLa | Rewrites Content-Language in HTTP/ ObjectRepleaceMetada-

nguage HTTPS responses. ta.setContentLanguage

expires Rewrites Expires in HTTP/HTTPS ObjectRepleaceMetada-
responses. ta.setExpires

2020-02-26

57

Object Storage Service
Java SDK Developer Guide

8 Object Downlo

ad

Paramete | Description Method in OBS Java

r SDK

cacheCon | Rewrites Cache-Control in HTTP/HTTPS | ObjectRepleaceMetada-
trol responses. ta.setCacheControl
contentDi | Rewrites Content-Disposition in HTTP/ | ObjectRepleaceMetada-
sposition | HTTPS responses. ta.setContentDisposition
contentEn | Rewrites Content-Encoding in HTTP/ ObjectRepleaceMetada-
coding HTTPS responses. ta.setContentEncoding

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

non

GetObjectRequest request = new GetObjectRequest("bucketname", "objectname");
ObjectRepleaceMetadata replaceMetadata = new ObjectRepleaceMetadata();

replaceMetadata.setContentType("image/jpeg");
request.setReplaceMetadata(replaceMetadata);

ObsObject obsObject = obsClient.getObject(request);
System.out.println(obsObject.getMetadata().getContentType());

obsObject.getObjectContent().close();

8.7 Obtaining Customized Metadata

After an object is successfully downloaded, its customized data is returned. Sample
code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload the object and customize the metadata.
PutObjectRequest request = new PutObjectRequest("bucketname", "objectname");
ObjectMetadata metadata = new ObjectMetadata();

non

non

metadata.addUserMetadata("property", "property-value");
request.setMetadata(metadata);
obsClient.putObject(request);

// Download the object and obtain the customized metadata.
ObsObject obsObject = obsClient.getObject("bucketname", "objectname");
System.outprintln(obsObject.getMetadata().getUserMetadata("property"));

obsObject.getObjectContent().close();

2020-02-26

58

Object Storage Service
Java SDK Developer Guide 8 Object Download

8.8 Downloading a Cold Object

If you want to download a Cold object, you need to restore the object first. Two
restore options are supported, as described in the following table:

Option Description Value in OBS Java SDK

Expedited Data can be restored within 1 | RestoreTierEnum.EXPEDITED
to 5 minutes.

Standard Data can be restored within 3 | RestoreTierEnum.STANDARD
to 5 hours. This is the default
option.

You can call ObsClient.restoreObject to restore a Cold object. Sample code is as
follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

RestoreObjectRequest request = new RestoreObjectRequest();
request.setBucketName("bucketname");
request.setObjectKey("objectname");

request.setDays(1);
request.setRestoreTier(RestoreTierEnum. EXPEDITED);
obsClient.restoreObject(request);

// Wait until the object is restored.
Thread.sleep(60 * 6 * 1000);

// Download an object.
ObsObject obsObject = obsClient.getObject("bucketname", "objectname");

obsObject.getObjectContent().close();

(11 NOTE

e The object specified in ObsClient.restoreObject must be in the OBS Cold storage class.
Otherwise, an exception will be thrown when you call this API.

e RestoreObjectRequest.setDays specifies the retention period of restored object,
ranging from 1 to 30.

e RestoreObjectRequest.setRestoreTier specifies the restore option, which indicates the
time spent on restoring an object.

8.9 Performing a Resumable Download

Downloading large files often fails due to poor network conditions or program
breakdowns. It is a waste of resources to restart the download process upon a
download failure, and the restarted download process may still suffer from the
unstable network. To resolve such issues, you can use the API for resumable
download, whose working principle is to divide the to-be-downloaded file into

2020-02-26 59

Object Storage Service
Java SDK Developer Guide

8 Object Download

multiple parts and download them separately. The download result of each part is
recorded in a checkpoint file in real time. Only when all parts are successfully
downloaded, the result indicating a successful download will be returned.
Otherwise, an exception is thrown to remind you of calling the API again for re-
downloading. Based on the download status of each part recorded in the
checkpoint file, the re-downloading will download the parts failed to be
downloaded previously, instead of downloading all parts. By virtue of this,
resources are saved and efficiency is improved.

You can call ObsClient.downloadFile to perform a resumable download. The
following table describes the parameters involved in this API.

Parameter | Description Method in OBS Java
SDK

bucketName | (Mandatory) Bucket name DownloadFileRequest.set
BucketName

objectKey (Mandatory) Object name DownloadFileRequest.set

ObjectKey

downloadFil
e

Full path of the local directory to
which the object is downloaded. If the
value of this parameter is null, the
downloaded object is saved in the
directory where the program is
executed.

DownloadFileRequest.set
DownloadFile

partSize Part size, in bytes. The value ranges DownloadFileRequest.set
from 100 KB to 5 GB and defaults to | PartSize
9 MB.
taskNum Maximum number of parts that can DownloadFileRequest.set
be concurrently downloaded. The TaskNum
default value is 1.
enableCheck | Whether to enable the resumable DownloadFileRequest.set
point download mode. The default value is | EnableCheckpoint

false, which indicates that this mode
is disabled.

checkpointFi
le

File used to record the download
progress. This parameter is effective
only in the resumable download
mode. If the value of this parameter is
null, the file will be in the same local
directory as the downloaded object.

DownloadFileRequest.set
CheckpointFile

versionld Object version DownloadFileRequest.set
Versionld

ifModifiedSi | Returns the object if it is modified DownloadFileRequest.set

nce after the time specified by this IfModifiedSince

parameter; otherwise, an exception is
thrown.

2020-02-26

60

Object Storage Service

Java SDK Developer Guide 8 Object Download
Parameter | Description Method in OBS Java
SDK
ifUnmodifie | Returns the object if it remains DownloadFileRequest.set
dSince unchanged since the time specified by | IfUnmodifiedSince

this parameter; otherwise, an
exception is thrown.

ifMatchTag | Returns the source object if its ETag is | DownloadFileRequest.set
the same as the one specified by this | IfMatchTag

parameter; otherwise, an exception is
thrown.

ifNoneMatc | Returns the source object if its ETag is | DownloadFileRequest.set
hTag different from the one specified by IfNoneMatchTag
this parameter; otherwise, an
exception is thrown.

progressList | Configure the data transmission DownloadFileRequest.set
ener listener to obtain download ProgressListener
progresses.

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
DownloadFileRequest request = new DownloadFileRequest("bucketname", "objectname");
// Set the local path to which the object is downloaded.
request.setDownloadFile("localfile");
// Set the maximum number of parts that can be concurrently downloaded.
request.setTaskNum(5);
// Set the part size to 10 MB.
request.setPartSize(10 * 1024 * 1024);
// Enable resumable download.
request.setEnableCheckpoint(true);
try{
// Perform a resumable download.
DownloadFileResult result = obsClient.downloadFile(request);
}catch (ObsException e) {
// When an exception occurs, you can call the API for resumable download again to perform re-
downloading.

}

2020-02-26 61

Object Storage Service
Java SDK Developer Guide 8 Object Download

(1J NOTE

e The API for resumable download, which is implemented based on partial download, is
an encapsulated and enhanced version of partial download.

e This API saves resources and improves efficiency upon the re-download, and speeds up
the download process by concurrently downloading parts. Because this API is invisible to
users, users are unaware of internal service details, such as the creation and deletion of
checkpoint files, division of objects, and concurrent download of parts.

e The default value of the enableCheckpoint parameter is false, which indicates that the
resumable download mode is disabled. In such cases, this APl degrades to the simple
encapsulation of partial download, and no checkpoint file will be generated.

e checkpointFile is effective only when enableCheckpoint is true.

2020-02-26 62

Object Storage Service
Java SDK Developer Guide 9 Object Management

Object Management

9.1 Obtaining Object Properties

You can call ObsClient.getObjectMetadata to obtain properties of an object,
including the length, MIME type, customized metadata. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectMetadata metadata = obsClient.getObjectMetadata("bucketname", "objectname");
System.outprintln("\t" + metadata.getContentType());

System.outprintln("\t" + metadata.getContentLength());

System.outprintln("\t" + metadata.getUserMetadata("property"));

9.2 Managing Object ACLs

Object ACLs, similar to bucket ACLs, support pre-defined access control policies
and direct configuration. For details, see Managing Bucket ACLs.

An object ACL can be configured in three modes:

1. Specify a pre-defined access control policy during object upload.
2. Call ObsClient.setObjectAcl to specify a pre-defined access control policy.
3. Call ObsClient.setObjectAcl to set the ACL directly.

Specifying a Pre-defined Access Control Policy During Object Upload

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

2020-02-26

63

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0066088967.html

Object Storage Service

Java SDK Developer Guide

9 Object Management

PutObjectRequest request = new PutObjectRequest();
request.setBucketName("bucketname");
request.setObjectKey("objectname");

request.setFile(new File("localfile"));

// Set the object ACL to public-read.
request.setAcl(AccessControlList. REST CANNED_PUBLIC READ);
obsClient.putObject(request);

Setting a Pre-defined Access Control Policy for an Object

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the object ACL to private.
obsClient.setObjectAcl("bucketname", "objectname", AccessControlList. REST CANNED_PRIVATE);

Directly Setting an Object ACL

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = new AccessControlList();

Owner owner = new Owner();

owner.setld("ownerid");

acl.setOwner(owner);

// Grant the FULL_CONTROL permission to a specified user.

acl.grantPermission(new CanonicalGrantee("userid"), Permission.PERMISSION_FULL_CONTROL);
// Grant the READ permission to all users.

acl.grantPermission(GroupGrantee.ALL USERS, Permission. PERMISSION_READ);
obsClient.setObjectAcl("bucketname", "objectname", acl);

(11 NOTE

The owner or grantee ID needed in the ACL indicates the account ID, which can be viewed

on the My Credentials page of OBS Console.

Obtaining an Object ACL

You can call ObsClient.getObjectAcl to obtain an object ACL. Sample code is as

follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "** Provide your Secret Key ***";

// Create an instance of ObsClient.

final ObsClient obsClient = new ObsClient(ak, sk, endPoint);
AccessControlList acl = obsClient.getObjectAcl("bucketname", "objectname");
System.outprintln(acl);

2020-02-26

64

Object Storage Service
Java SDK Developer Guide

9 Object Management

9.3 Listing Objects

You can call ObsClient.listObjects to list objects in a bucket.

The following table describes the parameters involved in this API.

Paramet
er

Description

Method in OBS Java
SDK

bucketN
ame

Bucket name

ListObjectsRequest.setBu
cketName

prefix

Name prefix that the objects to be listed
must contain

ListObjectsRequest.setPr
efix

marker

Object name to start with when listing
objects in a bucket. All objects are listed
in the lexicographical order.

ListObjectsRequest.setM
arker

maxKeys

Maximum number of objects returned in
the response. The value ranges from 1 to
1000. If the value is not in this range,
1000 objects are returned by default.

ListObjectsRequest.setM
axKeys

delimiter

Character used to group object names. If
the object name contains the delimiter
parameter, the character string from the
first character to the first delimiter in the
object name is grouped under a single
result element, commonPrefix. (If a
prefix is specified in the request, the
prefix must be removed from the object
name.)

ListObjectsRequest.setDe
limiter

Listing Objects in Simple Mode

The following sample code shows how to list objects in simple mode. A maximum
of 1000 objects can be listed.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ObjectListing result = obsClient.listObjects("bucketname");

for(ObsObject obsObject : result.getObjects()){
System.outprintln("\t" + obsObject.getObjectKey());
System.outprintln("\t" + obsObject.getOwner());

}

2020-02-26

65

Object Storage Service
Java SDK Developer Guide 9 Object Management

(1J NOTE

e A maximum of 1000 objects can be listed each time. If a bucket contains more than
1000 objects and ObijectListing.isTruncated is true in the returned result, not all
objects are listed. In such cases, you can use ObjectListing.getNextMarker to obtain
the start position for next listing.

e If you want to obtain all objects in a specified bucket, you can use the paging mode for
listing objects.

Listing Objects by Specifying the Number

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");

// Specify the number of objects to be listed to 100.

request.setMaxKeys(100);

ObjectListing result = obsClient.listObjects(request);

for(ObsObject obsObject : result.getObjects()){
System.outprintln("\t" + obsObject.getObjectKey());
System.outprintin("\t" + obsObject.getOwner());

}

Listing Objects by Specifying a Prefix

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");

// Set the number to 100 and the prefix to prefix.

request.setMaxKeys(100);

request.setPrefix("prefix");

ObjectListing result = obsClient.listObjects(request);

for(ObsObject obsObject : result.getObjects()){
System.outprintln("\t" + obsObject.getObjectKey());
System.outprintln("\t" + obsObject.getOwner());

}

Listing Objects by Specifying the Start Position

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
// List 100 objects following test in lexicographic order.
request.setMaxKeys(100);

request.setMarker("test");

2020-02-26

66

Object Storage Service
Java SDK Developer Guide 9 Object Management

ObjectListing result = obsClient.listObjects(request);

for(ObsObject obsObject : result.getObjects()){
System.outprintln("\t" + obsObject.getObjectKey());
System.outprintin("\t" + obsObject.getOwner());

}

Listing All Objects in Paging Mode
Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
// Set the number of objects displayed per page to 100.
request.setMaxKeys(100);

ObjectListing result;
do{
result = obsClient.listObjects(request);
for(ObsObject obsObject : result.getObjects()){
System.outprintln("\t" + obsObject.getObjectKey());
System.outprintln("\t" + obsObject.getOwner());
}

request.setMarker(result.getNextMarker());
Jwhile(result.isTruncated());

Listing All Objects in a Folder

There is no folder concept in OBS. All elements in buckets are objects. Folders are
actually objects whose sizes are 0 and whose names end with a slash (/). When
you set a folder name as the prefix, objects in this folder will be listed. Sample
code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");
// Set the prefix of objects in the folder to dir/.
request.setPrefix("dir/");

request.setMaxKeys(1000);

ObjectListing result;

do{
result = obsClient.listObjects(request);
for (ObsObject obsObject : result.getObjects())
{

System.outprintln("\t" + obsObject.getObjectKey());
System.outprintln("\t" + obsObject.getOwner());

}
request.setMarker(result.getNextMarker());
Jwhile(result.isTruncated());

Listing All Objects According to Folders in a Bucket

Sample code:

2020-02-26 67

Object Storage Service
Java SDK Developer Guide

9 Object Management

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListObjectsRequest request = new ListObjectsRequest("bucketname");

request.setMaxKeys(1000);

// Set folder isolators to slashes.

request.setDelimiter("/");

ObjectListing result = obsClient.listObjects(request);

System.outprintln("Objects in the root directory:");

for(ObsObject obsObject : result.getObjects()){
System.outprintln("\t" + obsObject.getObjectKey());
System.outprintln("\t" + obsObject.getOwner());

}

listObjectsByPrefix(obsClient, request, result);

The following is the sample code of the listObjectsByPrefix function, which is

used to recursively list objects in sub-folders.

static void listObjectsByPrefix(ObsClient obsClient, ListObjectsRequest request, ObjectListing result) throws

ObsException
{
for(String prefix : result.getCommonPrefixes()){
System.outprintln("Objects in folder [" + prefix + "]:");
request.setPrefix(prefix);
result = obsClient.listObjects(request);
for(ObsObject obsObject : result.getObjects()){
System.outprintln("\t" + obsObject.getObjectKey());
System.outprintln("\t" + obsObject.getOwner());
}
listObjectsByPrefix(obsClient, request, result);

}
(11 NOTE

e The sample code does not apply to scenarios where the number of objects in a folder

exceeds 1,000.

e Because objects and sub-folders in a folder are to be listed and all the objects end with

a slash (/), delimiter is always a slash (/).

e In the returned result of each recursion, ObjectListing.getObjects includes the objects
in the folder and ObjectListing.getCommonPrefixes includes the sub-folders in the

folder.

9.4 Deleting Objects

(11 NOTE

Exercise caution when performing this operation. If the versioning function is disabled for
the bucket where the object is located, the object cannot be restored after being deleted.

Deleting a Single Object

You can call ObsClient.deleteObject to delete a single object. Sample code is as

follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

2020-02-26

68

Object Storage Service
Java SDK Developer Guide 9 Object Management

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);
obsClient.deleteObject("bucketname"”, "objectname");

Deleting Objects in a Batch

You can call ObsClient.deleteObjects to delete objects in a batch.

A maximum of 1,000 objects can be deleted each time. Two response modes are
supported: verbose (detailed) and quiet (brief).

e In verbose mode (default mode), the returned response includes the deletion
result of each requested object.

e In quiet mode, the returned response includes only results of objects failed to
be deleted.

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsRequest request = new ListVersionsRequest("bucketname");
// Delete 100 objects at a time.
request.setMaxKeys(100);
ListVersionsResult result;
do {
result = obsClient.listVersions(request);

DeleteObjectsRequest deleteRequest = new DeleteObjectsRequest("bucketname");

for(VersionOrDeleteMarker v : result.getVersions()) {
deleteRequest.addKeyAndVersion(v.getKey(), v.getVersionld());
}

DeleteObjectsResult deleteResult = obsClient.deleteObjects(deleteRequest);
// Obtain the list of successfully deleted objects.
System.outprintln(deleteResult.getDeletedObjectResults());
// Obtain the list of objects failed to be deleted.
System.outprintln(deleteResult.getErrorResults());

request.setKeyMarker (result.getNextKeyMarker());
request.setVersionldMarker(result.getNextVersionldMarker());
Jwhile(result.isTruncated());

9.5 Copying an Object

Constraints

The object copy operation creates a copy for an existing object in OBS.

You can call ObsClient.copyObject to copy an object. When copying an object,
you can rewrite properties and ACL for it, as well as set restriction conditions.

e The user has the read permission on the source object to be copied.

Cross-region replication is not supported.

2020-02-26

69

Object Storage Service
Java SDK Developer Guide 9 Object Management

e The source object to be copied cannot be larger than 5 GB. If the size is less
than 1 GB, you are advised to copy it directly. If the size is greater than 1 GB,
you are advised to perform a multipart copy.

e If the source object to be copied is in the Cold storage class, you must restore
it first.

Copying an Object Directly

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

CopyObijectResult result = obsClient.copyObject("sourcebucketname", "sourceobjectname”,
"destbucketname", "destobjectname");
System.outprintin("\t" + result.getEtag());

Rewriting Object Properties

The following sample code shows how to rewrite object properties.

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

CopyObjectRequest request = new CopyObjectRequest("sourcebucketname", "sourceobjectname",
"destbucketname", "destobjectname");

// Rewrite object properties.

request.setReplaceMetadata(true);

ObjectMetadata newObjectMetadata = new ObjectMetadata();
newObjectMetadata.setContentType("image/jpeg");
newObjectMetadata.addUserMetadata("property", "property-value");
newObjectMetadata.setObjectStorageClass(StorageClassEnum. WARM);
request.setNewObjectMetadata(newObjectMetadata);
CopyObjectResult result = obsClient.copyObject(request);
System.outprintln("\t" + result.getEtag());

(11 NOTE

CopyObjectRequest.setReplaceMetadata and
CopyObjectRequest.setNewObjectMetadata must be used together.

Copying an Object by Specifying Conditions

When copying an object, you can specify one or more restriction conditions. If the
conditions are met, the object will be copied. Otherwise, an exception will be
thrown and the copy will fail.

You can set the following conditions.

2020-02-26 70

Object Storage Service
Java SDK Developer Guide

9 Object Management

Parameter

Description

Method in OBS Java
SDK

Copy-Source-If-Modified-
Since

Copies the source object
if it is changed after the
time specified by this
parameter; otherwise, an
exception is thrown.

CopyObjectRequest.setlf
ModifiedSince

Copy-Source-If-
Unmodified-Since

Copies the source object
if it is changed before
the time specified by this
parameter; otherwise, an
exception is thrown.

CopyObjectRequest.setlf
UnmodifiedSince

Copy-Source-If-Match

Copies the source object
if its ETag is the same as
the one specified by this
parameter; otherwise, an
exception is thrown.

CopyObjectRequest.setlf
MatchTag

Copy-Source-If-None-
Match

Copies the source object
if its ETag is different
from the one specified
by this parameter;
otherwise, an exception
is thrown.

CopyObjectRequest.setlf
NoneMatchTag

(11 NOTE

e The ETag of the source object is the MD5 check value of the source object.

e |f Copy-Source-If-Unmodified-Since, Copy-Source-If-Match, Copy-Source-If-
Modified-Since, or Copy-Source-If-None-Match is included and its specified condition
is not met, an exception, whose HTTP status code is 412 Precondition Failed, will be

thrown.

e Copy-Source-If-Modified-Since and Copy-Source-If-None-Match can be used
together, and so do Copy-Source-If-Unmodified-Since and Copy-Source-If-Match.

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

CopyObjectRequest request = new CopyObjectRequest("sourcebucketname", "sourceobjectname”,
"destbucketname", "destobjectname");

request.setlifModifiedSince(new SimpleDateFormat("yyyy-MM-dd").parse("2016-01-01"));
request.setifNoneMatchTag("none-match-etag");

CopyObjectResult result = obsClient.copyObject(request);
System.outprintln("\t" + result.getEtag());

2020-02-26

71

Object Storage Service

Java SDK Developer Guide

9 Object Management

Rewriting an Object ACL

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

CopyObjectRequest request = new CopyObjectRequest("sourcebucketname", "sourceobjectname”,
"destbucketname", "destobjectname");

// Modify the Object ACL to public-read.
request.setAcl(AccessControlList. REST CANNED_PUBLIC READ);
CopyObijectResult result = obsClient.copyObject(request);
System.outprintln("\t" + result.getEtag());

Performing a Multipart Copy

As a special case of multipart upload, multipart copy implements multipart upload

by copying the whole or part of an object in a bucket. You can call
ObsClient.copyPart to copy parts. Sample code is as follows:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

final String destBucketName = "destbucketname";

final String destObjectKey = "destobjectname";

final String sourceBucketName = "sourcebucketname";
final String sourceObjectKey = "sourceobjectname";

// Create an instance of ObsClient.

final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Initialize the thread pool.
ExecutorService executorService = Executors.newfixedThreadPool(20);

// Initialize the multipart upload.

InitiateMultipartUploadRequest request = new InitiateMultipartUploadRequest(destBucketName,
destObjectKey);

InitiateMultipartUploadResult result = obsClient.initiateMultipartUpload(request);

final String uploadld = result.getUploadId();
System.outprintln("\t"+ uploadid + "\n");

// Obtain information about the large object.

ObjectMetadata metadata = obsClient.getObjectMetadata(sourceBucketName, sourceObjectKey);
// Set the part size to 100 MB.

long partSize = 100 * 1024 * 1024L;

long objectSize = metadata.getContentLength();

// Calculate the number of parts need to be copied.
long partCount = objectSize % partSize == 0 ? objectSize / partSize : objectSize / partSize + 1;

final List<PartEtag> partEtags = Collections.synchronizedList(new ArrayList<PartEtag>());

// Start copying parts concurrently.
for (int i = 0; i < partCount; i++)
{
// Start position for copying parts
final long rangeStart = i * partSize;
// End position for copying parts
final long rangeEnd = (i + 1 == partCount) ? objectSize - 1 : rangeStart + partSize - 1;
// Part number
final int partNumber =i + 1;
executorService.execute(new Runnable()

2020-02-26

72

Object Storage Service

Java SDK Developer Guide

9 Object Management

@Override
public void run()
{
CopyPartRequest request = new CopyPartRequest();
request.setUploadld(uploadld);
request.setSourceBucketName(sourceBucketName);
request.setSourceObjectKey(sourceObjectKey);
request.setDestinationBucketName(destBucketName);
request.setDestinationObjectKey(destObjectKey);
request.setByteRangeStart(rangeStart);
request.setByteRangeEnd(rangeEnd);
request.setPartNumber(partNumber);
CopyPartResult result;
try
{
result = obsClient.copyPart(request);
System.out.printin("Part#" + partNumber + " done\n");
partEtags.add(new PartEtag(result.getEtag(), result.getPartNumber()));

catch (ObsException e)
{
e.printStackTrace();
}
}
b
}

// Wait until the copy is complete.
executorService.shutdown();
while ('executorService.isTerminated())
{

try

{

executorService.awaitTermination(5, TimeUnit. SECONDS);

catch (InterruptedException e)

{

}
}

e.printStackTrace();

// Combine parts.
CompleteMultipartUploadRequest completeMultipartUploadRequest = new

CompleteMultipartUploadRequest(destBucketName, destObjectKey, uploadld, partEtags);

obsClient.completeMultipartUpload(completeMultipartUploadRequest);

2020-02-26

73

Object Storage Service
Java SDK Developer Guide

10 Authorized Access

1 O Authorized Access

10.1 Using a URL for Authorized Access

ObsClient allows you to create a URL whose Query parameters are carried with
authentication information by specifying the AK and SK, HTTP method, and
request parameters. You can provide other users with this URL for temporary
access. When generating a URL, you need to specify the validity period of the URL

to restrict the access duration of visitors.

If you want to grant other users the permission to perform other operations on
buckets or objects (for example, upload or download objects), generate a URL
with the corresponding request (for example, to upload an object using the URL
that generates the PUT request) and provide the URL for other users.

The following table lists operations can be performed through a signed URL.

S

Operat | HTTP Request Method Special Bucket | Object

ion (Value in OBS Java SDK) Operator Name Name
(Value in OBS | Require | Require
Java SDK) d d

PUT HttpMethodEnum.PUT N/A Yes No

Bucket

GET HttpMethodEnum.GET N/A No No

Buckets

DELETE | HttpMethodEnum.DELETE N/A Yes No

Bucket

GET HttpMethodEnum.GET N/A Yes No

Objects

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Object um.VERSIONS

version

2020-02-26

74

Object Storage Service
Java SDK Developer Guide

10 Authorized Access

Operat | HTTP Request Method Special Bucket | Object

ion (Value in OBS Java SDK) Operator Name Name
(Value in OBS | Require | Require
Java SDK) d d

List HttpMethodEnum.GET SpecialParamEn | Yes No

Multip um.UPLOADS

art

upload

S

Obtain | HttpMethodEnum.HEAD N/A Yes No

Bucket

Metada

ta

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.LOCATION

locatio

n

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.STORAGEIN

storage FO

info

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.QUOTA

quota

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.QUOTA

quota

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.STORAGEP

storage oLIcY

Policy

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.STORAGEP

storage OoLIcY

Policy

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.ACL

acl

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.ACL

acl

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.LOGGING

logging

2020-02-26 75

Object Storage Service
Java SDK Developer Guide

10 Authorized Access

Operat | HTTP Request Method Special Bucket | Object

ion (Value in OBS Java SDK) Operator Name Name
(Value in OBS | Require | Require
Java SDK) d d

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.LOGGING

logging

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.POLICY

policy

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.POLICY

policy

DELETE | HttpMethodEnum.DELETE SpecialParamEn | Yes No

Bucket um.POLICY

policy

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.LIFECYCLE

lifecycl

e

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.LIFECYCLE

lifecycl

e

DELETE | HttpMethodEnum.DELETE SpecialParamEn | Yes No

Bucket um.LIFECYCLE

lifecycl

e

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.WEBSITE

website

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.WEBSITE

website

DELETE | HttpMethodEnum.DELETE SpecialParamEn | Yes No

Bucket um.WEBSITE

website

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.VERSIONIN

versioni G

ng

2020-02-26 76

Object Storage Service
Java SDK Developer Guide

10 Authorized Access

Operat | HTTP Request Method Special Bucket | Object

ion (Value in OBS Java SDK) Operator Name Name
(Value in OBS | Require | Require
Java SDK) d d

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.VERSIONIN

versioni G

ng

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.CORS

cors

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.CORS

cors

DELETE | HttpMethodEnum.DELETE SpecialParamEn | Yes No

Bucket um.CORS

cors

PUT HttpMethodEnum.PUT SpecialParamEn | Yes No

Bucket um.NOTIFICATI

notifica ON

tion

GET HttpMethodEnum.GET SpecialParamEn | Yes No

Bucket um.NOTIFICATI

notifica ON

tion

PUT HttpMethodEnum.PUT N/A Yes Yes

Object

Append | HttpMethodEnum.POST SpecialParamEn | Yes Yes

Object um.APPEND

GET HttpMethodEnum.GET N/A Yes Yes

Object

PUT HttpMethodEnum.PUT N/A Yes Yes

Object

- Copy

DELETE | HttpMethodEnum.DELETE N/A Yes Yes

Object

DELETE | HttpMethodEnum.POST SpecialParamEn | Yes Yes

Objects um.DELETE

Obtain | HttpMethodEnum.HEAD N/A Yes Yes

Object

Metada

ta

2020-02-26 77

Object Storage Service
Java SDK Developer Guide

10 Authorized Access

Operat | HTTP Request Method Special Bucket | Object

ion (Value in OBS Java SDK) Operator Name Name
(Value in OBS | Require | Require
Java SDK) d d

PUT HttpMethodEnum.PUT SpecialParamEn | Yes Yes

Object um.ACL

acl

GET HttpMethodEnum.GET SpecialParamEn | Yes Yes

Object um.ACL

acl

Initiate | HttpMethodEnum.POST SpecialParamEn | Yes Yes

Multip um.UPLOADS

art

Upload

PUT HttpMethodEnum.PUT N/A Yes Yes

Part

PUT HttpMethodEnum.PUT N/A Yes Yes

Part -

Copy

List HttpMethodEnum.GET N/A Yes Yes

Parts

Comple | HttpMethodEnum.POST N/A Yes Yes

te

Multip

art

Upload

DELETE | HttpMethodEnum.DELETE N/A Yes Yes

Multip

art

Upload

POST HttpMethodEnum.POST SpecialParamEn | Yes Yes

Object um.RESTORE

restore

To use a URL for authorized access, perform the following two steps:

Step 1
Step 2

--—-End

Call ObsClient.createTemporarySignature to generate a signed URL.

Use any HTTP library to make an HTTP/HTTPS request to OBS.

The following code provides an example showing how to use a URL for authorized
access, including bucket creation, as well as object upload, download, listing, and

deletion.

2020-02-26

78

Object Storage Service

Java SDK Developer Guide

10 Authorized Access

Creating a Bucket

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum. PUT,
expireSeconds);

request.setBucketName("bucketname");

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);
System.outprintln("Creating bucket using temporary signature url:");

System.outprintln("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builder.header(entry.getKey(), entry.getValue());

}

// Make a PUT request to create a bucket.

String location = "your bucket location";

Request httpRequest = builder.url(response.getSignedUrl()).put(RequestBody.create(null,

"<CreateBucketConfiguration><LocationConstraint>" + location + "</LocationConstraint></

CreateBucketConfiguration>".getBytes())).build();

OkHttpClient httpClient = new

OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
.cache(null).build();

Call ¢ = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() !'= null) {
System.outprintln("\tContent:" + res.body().string() + "\n");

res.close();

Uploading an Object

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

Map<String, String> headers = new HashMap<String, String>();
String contentType = "text/plain";
headers.put("Content-Type", contentType);

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum. PUT,
expireSeconds);

request.setBucketName("bucketname");

request.setObjectKey("objectname");

request.setHeaders(headers);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.outprintln("Creating object using temporary signature url:");

System.outprintln("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builder.header(entry.getKey(), entry.getValue());

}

2020-02-26

79

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

//Make a PUT request to upload an object.
Request httpRequest =
builder.url(response.getSignedUrl()).put(RequestBody.create(MediaType.parse(contentType), "Hello
OBS".getBytes("UTF-8"))).build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)

.cache(null).build();

Call ¢ = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() !'= null) {
System.outprintln("\tContent:" + res.body().string() + "\n");

res.close();

Downloading an Object

String endPoint = "http://your-endpoint”;
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***",;

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum. GET,
expireSeconds);

request.setBucketName("bucketname");

request.setObjectKey("objectname");

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.outprintln("Getting object using temporary signature url:");

System.outprintln("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builder.header(entry.getKey(), entry.getValue());

}

//Make a GET request to download an object.

Request httpRequest = builder.url(response.getSignedUrl()).get().build();

OkHttpClient httpClient = new

OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
.cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() != null) {
System.outprintln("\tContent:" + res.body().string() + "\n");

res.close();

Listing Objects

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.GET,

2020-02-26 80

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

expireSeconds);
request.setBucketName("bucketname");

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.outprintln("Getting object list using temporary signature url:");

System.outprintln("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builderheader(entry.getKey(), entry.getValue());

}

//Make a GET request to obtain the object list.

Request httpRequest = builder.url(response.getSignedUrl()).get().build();

OkHttpClient httpClient = new

OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
.cache(null).build();

Call ¢ = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() != null) {
System.outprintln("\tContent:" + res.body().string() + "\n");

res.close();

Deleting an Object

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum. DELETE,
expireSeconds);

request.setBucketName("bucketname");

request.setObjectKey("objectname");

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.outprintln("Deleting object using temporary signature url:");

System.outprintln("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builder.header(entry.getKey(), entry.getValue());

}

//Make a DELETE request to delete an object.

Request httpRequest = builder.url(response.getSignedUrl()).delete().build();

OkHttpClient httpClient = new

OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
.cache(null).build();

Call ¢ = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() !'= null) {
System.outprintln("\tContent:" + res.body().string() + "\n");

res.close();

2020-02-26 81

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

Initiating Multipart Upload

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.POST,
expireSeconds);

request.setBucketName("bucketname");

request.setObjectKey("objectname");

request.setSpecialParam(SpecialParamEnum.UPLOADS);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.outprintln("initiate multipart upload using temporary signature url:");
System.outprintln("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builder.header(entry.getKey(), entry.getValue());

}

// POST a request to initialize a multipart upload.
Request httpRequest = builder.url(response.getSignedUrl()).post(RequestBody.create(null, "")).build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)

.cache(null).build();

Call ¢ = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() !'= null) {
System.outprintln("\tContent:" + res.body().string() + "\n");

res.close();

Uploading Parts

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.POST,
expireSeconds);

request.setBucketName("bucketname");

request.setObjectKey("objectname");

Map<String, Object> queryParams = new HashMap<String, Object>();
// Set the partNumber parameter, for example, queryParams.put("partNumber”, "1").

queryParams.put("partNumber", "partNumber");
queryParams.put("uploadld", "your uploadld");

request.setQueryParams(queryParams);
TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.outprintln("upload part using temporary signature url:");
System.outprintln("\t" + response.getSignedUrl());

2020-02-26

82

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builder.header(entry.getKey(), entry.getValue());

}

// PUT a request to upload object parts.
Request httpRequest = builder.url(response.getSignedUrl()).put(RequestBody.create(null, new byte[6 * 1024
*1024])).build();
OkHttpClient httpClient = new
OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)

.cache(null).build();

Call ¢ = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() != null) {
System.outprintln("\tContent:" + res.body().string() + "\n");

res.close();

Listing Uploaded Parts

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.GET,
expireSeconds);

request.setBucketName("bucketname");

request.setObjectKey("objectname");

Map<String, Object> queryParams = new HashMap<String, Object>();
queryParams.put("uploadld", "your uploadld");
request.setQueryParams(queryParams);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.outprintln("list parts using temporary signature url:");
System.outprintln("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builder.header(entry.getKey(), entry.getValue());

}

// Make a GET request to list uploaded parts.

Request httpRequest = builder.url(response.getSignedUrl()).get().build();

OkHttpClient httpClient = new

OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
.cache(null).build();

Call c = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() != null) {
System.outprintln("\tContent:" + res.body().string() + "\n");
}

res.close();

Merging Uploaded Parts

String endPoint = "http://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

2020-02-26 83

Object Storage Service
Java SDK Developer Guide 10 Authorized Access

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
// Specify the validity period of the URL to 3600 seconds.
long expireSeconds = 3600L;

TemporarySignatureRequest request = new TemporarySignatureRequest(HttpMethodEnum.POST,
expireSeconds);

request.setBucketName("bucketname");

request.setObjectKey("objectname");

Map<String, String> headers = new HashMap<String, String>();
String contentType = "application/xml";
headers.put("Content-Type", contentType);
request.setHeaders(headers);

Map<String, Object> queryParams = new HashMap<String, Object>();
queryParams.put("uploadld", "your uploadld");
request.setQueryParams(queryParams);

TemporarySignatureResponse response = obsClient.createTemporarySignature(request);

System.outprintln("complete multipart upload using temporary signature url:");
System.outprintln("\t" + response.getSignedUrl());

Request.Builder builder = new Request.Builder();

for (Map.Entry<String, String> entry : response.getActualSignedRequestHeaders().entrySet()) {
builder.header(entry.getKey(), entry.getValue());

}

// The following content is an example code. You need to assemble the following content by listing the
response results of the uploaded parts.

String content = "<CompleteMultipartUpload>";

content += "<Part>";

content += "<PartNumber>1</PartNumber>";

content += "<ETag>da6a0d097e307ac52ed9b4ad551801fc</ETag>";
content += "</Part>";

content += "<Part>";

content += "<PartNumber>2</PartNumber>";

content += "<ETag>da6a0d097e307ac52ed9b4ad551801fc</ETag>";
content += "</Part>";

content += "</CompleteMultipartUpload>";

// POST a request to merge uploaded parts.

Request httpRequest =

builder.url(response.getSignedUrl()).post(RequestBody.create(MediaType.parse(contentType),

content.getBytes("UTF-8"))).build();

OkHttpClient httpClient = new

OkHttpClient.Builder().followRedirects(false).retryOnConnectionFailure(false)
.cache(null).build();

Call ¢ = httpClient.newCall(httpRequest);
Response res = c.execute();
System.outprintln("\tStatus:" + res.code());
if (res.body() != null) {
System.outprintln("\tContent:" + res.body().string() + "\n");

res.close();

(11 NOTE

e HttpMethodEnum is an enumeration function defined in OBS Java SDK, whose value
indicates the request method types.

2020-02-26 84

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

1 1 Versioning Management

11.1 Versioning Overview

OBS can store multiple versions of an object. You can quickly search for and
restore different versions as well as restore data in the event of misoperations or
application faults.

For details, see Versioning.

11.2 Setting Versioning Status for a Bucket

You can call ObsClient.setBucketVersioning to set the versioning status for a
bucket. OBS supports two versioning statuses.

2020-02-26 85

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853504.html

Object Storage Service
Java SDK Developer Guide

11 Versioning Management

Versioning
Status

Description

Value in OBS Java SDK

Enabled

1. OBS creates a unique version ID for
each uploaded object. Namesake
objects are not overwritten and are
distinguished by their own version
IDs.

2. Objects can be downloaded by
specifying the version ID. By
default, the object of the latest
version is downloaded if no version
ID is specified.

3. Objects can be deleted by
specifying the version ID. If an
object is deleted with no version ID
specified, the object will generate a
delete marker with a unique version
ID but is not physically deleted.

4. Obijects of the latest version in a
bucket are returned by default after
ObsClient.listObjects is called. You
can call ObsClient.listVersions to
list a bucket's objects with all
version IDs.

5. Except for delete markers, storage
space occupied by objects with all
version IDs is billed.

VersioningStatusE-
num.ENABLED

Suspended

1. Noncurrent object versions are not
affected.

2. OBS creates version ID null to an
uploaded object and the object will
be overwritten after a namesake
one is uploaded.

3. Objects can be downloaded by
specifying the version ID. By
default, the object of the latest
version is downloaded if no version
ID is specified.

4. Obijects can be deleted by
specifying version IDs. If an object is
deleted with no version ID specified,
the object is only attached with a
delete marker whose version ID is
null. Objects with version ID null
are physically deleted.

5. Except for delete markers, storage
space occupied by objects with all
version IDs is billed.

VersioningStatusE-
num.SUSPENDED

2020-02-26

86

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Enable versioning for a bucket.
obsClient.setBucketVersioning("bucketname", new
BucketVersioningConfiguration(VersioningStatusEnum. ENABLED));

// Suspend versioning for a bucket.
obsClient.setBucketVersioning("bucketname", new
BucketVersioningConfiguration(VersioningStatusEnum.SUSPENDED));

11.3 Viewing Versioning Status of a Bucket

You can call ObsClient.getBucketVersioning to view the versioning status of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketVersioningConfiguration status = obsClient.getBucketVersioning("bucketname");
System.outprintln("\t" + status.getVersioningStatus());

11.4 Obtaining a Versioning Object

You can call ObsClient.getObject to obtain a versioning object by specifying the
version ID (versionld). Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set versionld to obtain a versioning object.
ObsObject obsObject = obsClient.getObject("bucketname", "objectname", "versionid");
obsObject.getObjectContent().close();

(1 NOTE

If version ID is null, the object of the latest version will be downloaded, by default.

11.5 Copying a Versioning Object

You can call ObsClient.copyObject to pass the version ID (versionld) to copy a
versioning object. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

2020-02-26 87

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

CopyObjectRequest request = new CopyObjectRequest();
request.setSourceBucketName("sourebucketname");
request.setSourceObjectKey("sourceobjectname");

// Set the version ID of the object to be copied.
request.setVersionld("versionid");
request.setDestinationBucketName("destbucketname");
request.setDestinationObjectKey("destobjectname");
obsClient.copyObject(request);

11.6 Restoring a Versioning Cold Object

You can call ObsClient.restoreObject to restore a versioning Cold object by
specifying the version ID (versionld). Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

RestoreObjectRequest request = new RestoreObjectRequest("bucketname", "objectname”, 1);
// Restore a versioning object in the Expedited mode.
request.setRestoreTier(RestoreTierEnum. EXPEDITED);

request.setVersionld("versionid");
obsClient.restoreObject(request);

11.7 Listing Versioning Objects

You can call ObsClient.listVersions to list versioning objects.

The following table describes the parameters involved in this API.

Paramete | Description
r

bucketNa | Bucket name
me

prefix Name prefix that the objects to be listed must contain

keyMarke | Object name to start with when listing versioning objects in a
r bucket. All versioning objects whose names follow this parameter
are listed in the lexicographical order.

maxKeys | Maximum number of versioning objects returned. The value ranges
from 1 to 1000. If the value is not in this range, 1,000 versioning
objects are returned by default.

delimiter | Character used to group object names. If the object name contains
the delimiter parameter, the character string from the first
character to the first delimiter in the object name is grouped under
a single result element, commonPrefix. (If a prefix is specified in
the request, the prefix must be removed from the object name.)

2020-02-26 88

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

Paramete | Description

r

versionld | Indicates the object name to start with when listing objects in a
Marker bucket. All objects are listed in the lexicographical order by object

name and version ID. This parameter must be used together with
keyMarker.

(11 NOTE

If the value of versionldMarker is not a version ID specified by keyMarker,
versionldMarker is ineffective.

The returned result of ObsClient.listVersions includes the versioning objects and delete
markers.

Listing Versioning Objects in Simple Mode

The following sample code shows how to list versioning objects in simple mode. A
maximum of 1000 versioning objects can be returned.

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsResult result = obsClient.listVersions("bucketname");

for(VersionOrDeleteMarker v : result.getVersions()){

System.outprintin("\t" + v.getKey());
System.out.printin("\t" + v.getOwner());
System.outprintin("\t" + v.iisDeleteMarker());

(11 NOTE

e A maximum of 1,000 versioning objects can be listed each time. If a bucket contains

more than 1,000 objects and ListVersionsResult.isTruncated is true in the returned
result, not all versioning objects are listed. In such cases, you can use
ListVersionsResult.getNextKeyMarker and
ListVersionsResult.getNextVersionldMarker to obtain the start position for next
listing.

If you want to obtain all versioning objects in a specified bucket, you can use the paging
mode for listing objects.

Listing Versioning Objects by Specifying the Number

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsResult result = obsClient.listVersions("bucketname", 100);
for(VersionOrDeleteMarker v : result.getVersions()){

System.outprintin("\t" + v.getKey());
System.outprintln("\t" + v.getOwner());

2020-02-26

89

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

System.outprintin("\t" + v.isDeleteMarker());
}

Listing Versioning Objects by Specifying a Prefix

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// List 100 objects whose name prefix is prefix.
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 100);
request.setPrefix("prefix");
ListVersionsResult result = obsClient.listVersions(request);
for(VersionOrDeleteMarker v : result.getVersions()){

System.outprintin("\t" + v.getKey());

System.outprintin("\t" + v.getOwner());

System.outprintin("\t" + v.iisDeleteMarker());
}

Listing Versioning Objects by Specifying the Start Position

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// List 100 versioning objects whose names following test in lexicographic order.
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 100);
request.setKeyMarker("test");

ListVersionsResult result = obsClient.listVersions(request);

for(VersionOrDeleteMarker v : result.getVersions()){
System.outprintin("\t" + v.getKey());
System.outprintin("\t" + v.getOwner());
System.outprintin("\t" + v.isDeleteMarker());

}

Listing All Versioning Objects in Paging Mode

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsResult result;
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 100);
do{
result = obsClient.listVersions(request);
for(VersionOrDeleteMarker v : result.getVersions()){
System.outprintln("\t" + v.getKey());
System.outprintln("\t" + v.getOwner());
System.outprintln("\t" + v.isDeleteMarker());
}
request.setKeyMarker (result.getNextKeyMarker());
request.setVersionldMarker (result.getNextVersionldMarker());
Jwhile(result.isTruncated());

2020-02-26

90

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

Listing All Versioning Objects in a Folder

There is no folder concept in OBS. All elements in buckets are objects. Folders are
actually objects whose sizes are 0 and whose names end with a slash (/). When
you set a folder name as the prefix, objects in this folder will be listed. Sample
code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsResult result;
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 100);
// Set the prefix of objects in the folder to dir/.
request.setPrefix("dir/");
dof
result = obsClient.listVersions(request);
for(VersionOrDeleteMarker v : result.getVersions()){
System.outprintln("\t" + v.getKey());
System.outprintln("\t" + v.getOwner());
System.outprintln("\t" + v.isDeleteMarker());
}
request.setKeyMarker(result.getNextKeyMarker());
request.setVersionldMarker(result.getNextVersionldMarker());
}while(result.isTruncated());

Listing All Versioning Objects According to Folders in a Bucket

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

ListVersionsRequest request = new ListVersionsRequest ("bucketname", 1000);

request.setDelimiter("/");

ListVersionsResult result = obsClient.listVersions(request);

System.out.println("Objects in the root directory:");

for(VersionOrDeleteMarker v : result.getVersions()){
System.outprintin("\t" + v.getKey());
System.outprintln("\t" + v.getOwner());
System.outprintln("\t" + v.isDeleteMarker());

}

listVersionsByPrefix(obsClient, result);

The following is the sample code of the listVersionsByPrefix function, which is
used to recursively list objects in sub-folders.

static void listVersionsByPrefix(ObsClient obsClient, ListVersionsResult result) throws ObsException{
for(String prefix : result.getCommonPrefixes()){
System.outprintln("Objects in folder [" + prefix + "]:");
ListVersionsRequest request = new ListVersionsRequest ("bucketname", 1000);
request.setDelimiter("/");
request.setPrefix(prefix)
result = obsClient.listVersions(request);
for(VersionOrDeleteMarker v : result.getVersions()){
System.outprintin("\t" + v.getKey());
System.outprintln("\t" + v.getOwner());
System.outprintln("\t" + v.isDeleteMarker());
}

listVersionsByPrefix(obsClient, result);

2020-02-26 91

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

(1J NOTE

e The previous sample code does not include scenarios where the number of objects in a
folder exceeds 1000.

e Because objects and sub-folders in a folder are to be listed and all the objects end with
a slash (/), delimiter is always a slash (/).

e In the returned result of each recursion, ListVersionsResult.getVersions includes the
versioning objects in the folder and ListVersionsResult.getCommonPrefixes includes
the sub-folders in the folder.

11.8 Setting or Obtaining a Versioning Object ACL

Directly Setting a Versioning Object ACL

You can call ObsClient.setObjectAcl and set the version ID (versionld) to specify
the ACL for a versioning object. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Set the versioning object ACL to public-read by specifying the pre-defined access control policy.
obsClient.setObjectAcl("bucketname", "objectname", AccessControlList. REST_CANNED_PUBLIC_RFEAD,
"versionid");

AccessControlList acl = new AccessControlList();

Owner owner = new Owner();

owner.setld("ownerid");

acl.setOwner(owner);

// Grant the READ permission to all users.
acl.grantPermission(GroupGrantee.ALL_USERS, Permission.PERMISSION_READ);
// Set the ACL for a versioning object.

obsClient.setObjectAcl("bucketname"”, "objectname", acl, "versionid");

(11 NOTE

The owner or grantee ID needed in the ACL indicates the account ID, which can be viewed
on the My Credentials page of OBS Console.

Obtaining a Versioning Object ACL

You can call ObsClient.getObjectAcl to obtain the ACL of a versioning object by
specifying the version ID (versionld). Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

AccessControlList acl = obsClient.getObjectAcl("bucketname", "objectname", "versionid");
System.outprintln(acl);

2020-02-26

92

Object Storage Service
Java SDK Developer Guide 11 Versioning Management

11.9 Deleting Versioning Objects

Deleting a Single Versioning Object

You can call ObsClient.deleteObject to pass the version ID (versionld) to delete a
versioning object. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

"o

obsClient.deleteObject("bucketname", "objectname", "versionid");

Deleting Versioning Objects in a Batch

You can call ObsClient.deleteObjects to pass the version ID (versionld) of each
to-be-deleted versioning object to delete them. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

DeleteObjectsRequest request = new DeleteObjectsRequest("bucketname");
request.setQuiet(false);

List<KeyAndVersion> toDelete = new ArrayList<KeyAndVersion>();
toDelete.add(new KeyAndVersion("objectname1", "versionid1"));

toDelete.add (new KeyAndVersion("objectname2", "versionid2"));

toDelete.add (new KeyAndVersion("objectname3", "versionid3"));
request.setkeyAndVersions(toDelete.toArray(new KeyAndVersion[toDelete.size()]));
DeleteObjectsResult result = obsClient.deleteObjects(request);

System.outprintin("\t" + result.getDeletedObjectResults());
System.outprintin("\t" + result.getErrorResults());

2020-02-26

93

Object Storage Service
Java SDK Developer Guide 12 Lifecycle Management

1 2 Lifecycle Management

12.1 Lifecycle Management Overview

OBS allows you to set lifecycle rules for buckets to automatically transit the
storage class of an object and delete expired objects, so as to effectively use
storage features and optimize the storage space. You can set multiple lifecycle
rules based on the prefix. A lifecycle rule must contain:

e Rule ID, which uniquely identifies the rule
e Prefix of objects that are under the control of this rule

e Transition policy of an object of the latest version, which can be specified in
either mode:

a. How many days after the object is created
b. Transition date

e Expiration time of an object of the latest version, which can be specified in
either mode:

a. How many days after the object is created
b. Expiration date

e Transition policy of a noncurrent object version, which can be specified in the
following mode:

- How many days after the object becomes a noncurrent object version

e Expiration time of a noncurrent object version, which can be specified in the
following mode:

- How many days after the object becomes a noncurrent object version
e Identifier specifying whether the setting is effective

For more information, see Lifecycle Management.

2020-02-26 94

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853659.html

Object Storage Service
Java SDK Developer Guide 12 Lifecycle Management

(1J NOTE

e An object will be automatically deleted by the OBS server once it expires.

e The time set in the transition policy of an object must be earlier than its expiration time,
and the time set in the transition policy of a noncurrent object version must be earlier
than its expiration time.

e The configured expiration time and transition policy for a noncurrent object version will
take effect only when the versioning is enabled or suspended for a bucket.

12.2 Setting Lifecycle Rules

You can call ObsClient.setBucketLifecycle to set lifecycle rules for a bucket.

Setting an Object Transition Policy

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.
ObsClient obsClient = new ObsClient(ak, sk, endPoint);

LifecycleConfiguration config = new LifecycleConfiguration();

Rule rule = config.new Rule();

rule.setEnabled(true);

rule.setld("rule1");

rule.setPrefix("prefix");

Transition transition = config.new Transition();

// Specify that objects whose names contain the prefix will be transited 30 days after creation.
transition.setDays(30);

// Specify the storage class of the object after transition.
transition.setObjectStorageClass(StorageClassEnum. WARM);

// Specify a date when the objects whose names contain the prefix will be transited.
// transition.setDate(new SimpleDateFormat("yyyy-MM-dd").parse("2018-10-31"));
rule.getTransitions().add(transition);

NoncurrentVersionTransition noncurrentVersionTransition = config.new NoncurrentVersionTransition();
// Specify that objects whose names contain the prefix will be transited after changing into noncurrent
versions for 30 days.

noncurrentVersionTransition.setDays(30);

// Specify the storage class of the noncurrent object version after transition.
noncurrentVersionTransition.setObjectStorageClass(StorageClassEnum.COLD);
rule.getNoncurrentVersionTransitions().add (noncurrentVersionTransition);

config.addRule(rule);

obsClient.setBucketLifecycle("bucketname", config);

Setting an Object Expiration Time

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

LifecycleConfiguration config = new LifecycleConfiguration();

Rule rule = config.new Rule();

2020-02-26 95

Object Storage Service
Java SDK Developer Guide 12 Lifecycle Management

rule.setEnabled(true);

rule.setld("rule1");

rule.setPrefix("prefix");

Expiration expiration = config.new Expiration();

// Specify that objects whose names contain the prefix will expire 60 days after creation.
expiration.setDays(60);

// Specify a date when the objects whose names contain the prefix will expire.

// expiration.setDate(new SimpleDateFormat("yyyy-MM-dd").parse("2018-12-31"));
rule.setExpiration(expiration);

NoncurrentVersionExpiration noncurrentVersionExpiration = config.new NoncurrentVersionExpiration();
// Specify that objects whose names contain the prefix will expire after changing into noncurrent versions
for 60 days.

noncurrentVersionExpiration.setDays(60);
rule.setNoncurrentVersionExpiration(noncurrentVersionExpiration);

config.addRule(rule);

obsClient.setBucketLifecycle("bucketname", config);

12.3 Viewing Lifecycle Rules

You can call ObsClient.getBucketLifecycle to view lifecycle rules of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

LifecycleConfiguration config = obsClient.getBucketLifecycle("bucketname");

for (Rule rule : config.getRules())
{
System.outprintln(rule.getld());
System.out.println(rule.getPrefix());
for(Transition transition : rule.getTransitions()){
System.outprintln(transition.getDays());
System.outprintln(transition.getStorageClass());
}
System.out.println(rule.getExpiration() != null ? rule.getExpiration().getDays() : "");
for(NoncurrentVersionTransition noncurrentVersionTransition : rule.getNoncurrentVersionTransitions()){
System.out.println(noncurrentVersionTransition.getDays());
System.out.println(noncurrentVersionTransition.getStorageClass());
}
System.out.println(rule.getNoncurrentVersionExpiration() != null ?
rule.getNoncurrentVersionExpiration().getDays() : "");

}

12.4 Deleting Lifecycle Rules

You can call ObsClient.deleteBucketLifecycle to delete lifecycle rules of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.deleteBucketLifecycle("bucketname");

2020-02-26

96

Object Storage Service
Java SDK Developer Guide 13 CORS

CORS

13.1 CORS Overview

Cross-origin resource sharing (CORS) allows web application programs to access
resources in other domains. OBS provides developers with APIs for facilitating
Cross-origin resource access.

For more information, see CORS.

13.2 Setting CORS Rules

You can call ObsClient.setBucketCors to set CORS rules for a bucket. If the
bucket is configured with CORS rules, the newly set ones will overwrite the
existing ones. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketCors cors = new BucketCors();

List<BucketCorsRule> rules = new ArrayList<BucketCorsRule>();
BucketCorsRule rule = new BucketCorsRule();

ArrayList<String> allowedOrigin = new ArrayList<String>();
// Specify the origin of the cross-origin request.
allowedOrigin.add("http://www.a.com");
allowedOrigin.add("http://www.b.com");
rule.setAllowedOrigin(allowedOrigin);

ArrayList<String> allowedMethod = new ArrayList<String>();

// Specify the request method, which can be GET, PUT, DELETE, POST, or HEAD.
allowedMethod.add("GET");

allowedMethod.add("HEAD");

allowedMethod.add("PUT");

rule.setAllowedMethod (allowedMethod);

ArrayList<String> allowedHeader = new ArrayList<String>();
// Specify whether headers specified in Access-Control-Request-Headers in the OPTIONS request can be
used.

2020-02-26

97

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853680.html

Object Storage Service
Java SDK Developer Guide 13 CORS

allowedHeader.add("x-obs-header");
rule.setAllowedHeader(allowedHeader);

ArrayList<String> exposeHeader = new ArrayList<String>();

// Specify response headers that users can access using application programs.
exposeHeader.add("x-obs-expose-header");
rule.setExposeHeader(exposeHeader);

// Specify the browser's cache time of the returned results of OPTIONS requests for specific resources, in
seconds.

rule.setMaxAgeSecond(10);

rules.add(rule);

cors.setRules(rules);

obsClient.setBucketCors("bucketname", cors);
(1] NOTE

AllowedOrigins and AllowedHeaders respectively can contain up to one wildcard
character (*). The wildcard character (*) indicates that all origins or headers are allowed.

13.3 Viewing CORS Rules

You can call ObsClient.getBucketCors to view CORS rules of a bucket. Sample
code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketCors cors = obsClient.getBucketCors("bucketname");

for(BucketCorsRule rule : cors.getRules()){
System.out.printin("\t" + rule.getld());
System.out.println("\t" + rule.getMaxAgeSecond());
System.outprintln("\t" + rule.getAllowedHeader());
System.outprintin("\t" + rule.getAllowedOrigin());
System.out.printin("\t" + rule.getAllowedMethod());
System.outprintln("\t" + rule.getExposeHeader());

13.4 Deleting CORS Rules

You can call ObsClient.deleteBucketCors to delete CORS rules of a bucket.
Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.deleteBucketCors("bucketname");

2020-02-26 98

Object Storage Service
Java SDK Developer Guide 14 Access Logging

Access Logging

14.1 Logging Overview

OBS allows you to configure access logging for buckets. After the configuration,
access to buckets will be recorded in the format of logs. These logs will be saved
in specific buckets in OBS.

For more information, see Logging.

14.2 Enabling Bucket Logging

You can call ObsClient.setBucketLogging to enable bucket logging.

NOTICE

The source bucket and target bucket of logging must be in the same region.

(1] NOTE

If the bucket is in the OBS Warm or Cold storage class, it cannot be used as the target
bucket.

Enabling Bucket Logging

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketLoggingConfiguration config = new BucketLoggingConfiguration();
config.setAgency("your agency");
config.setTargetBucketName("targetbucketname");
config.setLogfilePrefix("targetprefix");

obsClient.setBucketLogging("bucketname", config);

2020-02-26 99

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853553.html

Object Storage Service
Java SDK Developer Guide 14 Access Logging

Setting ACLs for Objects to Be Logged

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

String targetBucket = "targetbucketname";

// Configure logging.

BucketLoggingConfiguration config = new BucketLoggingConfiguration();
config.setAgency("your agency");
config.setTargetBucketName(targetBucket);
config.setLogfilePrefix("prefix");

// Grant the READ permission on the objects to be logged to all users.
GrantAndPermission grant1 = new GrantAndPermission(GroupGrantee.ALL_USERS,
Permission.PERMISSION_READ);

config.setTargetGrants(new GrantAndPermission[]{grant1});

obsClient.setBucketLogging("bucketname", config);

14.3 Viewing Bucket Logging

You can call ObsClient.getBucketLogging to view the logging settings of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketLoggingConfiguration config = obsClient.getBucketLogging("bucketname");
System.outprintln("\t" + config.getTargetBucketName());
System.outprintln("\t" + config.getLogfilePrefix());

14.4 Disabling Bucket Logging

You can call ObsClient.setBucketLogging to clear logging settings of a bucket so
as to disable logging of the bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Leave the logging settings in blank.
obsClient.setBucketLogging("bucketname", new BucketLoggingConfiguration());

2020-02-26 100

Object Storage Service
Java SDK Developer Guide 15 Static Website Hosting

1 5 Static Website Hosting

15.1 Static Website Hosting Overview

You can upload the content files of the static website to your bucket in OBS as
objects and configure the public-read permission on the files, and then configure
the static website hosting mode for your bucket to host your static websites in
OBS. After this, when third-party users access your websites, they actually access
the objects in your bucket in OBS. When using static website hosting, you can
configure request redirection to redirect specific or all requests.

For more information, see Static Website Hosting.

15.2 Website File Hosting

Step 1

Step 2
Step 3

You can perform the following to implement website file hosting:

Upload a website file to your bucket in OBS as an object and set the MIME type
for the object.

Set the ACL of the object to public-read.
Access the object using a browser.

--—-End

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Upload objects and set the MIME type for the objects.
PutObjectRequest request = new PutObjectRequest();
request.setBucketName("bucketname");
request.setObjectKey("test.html");

request.setFile(new File("localfile.html"));
ObjectMetadata metadata = new ObjectMetadata();
metadata.setContentType("text/html");

2020-02-26

101

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0066036537.html

Object Storage Service
Java SDK Developer Guide 15 Static Website Hosting

request.setMetadata(metadata);
obsClient.putObject(request);

// Set the object ACL to public-read.
obsClient.setObjectAcl("bucketname"”, "test.html", AccessControlList. REST CANNED_PUBLIC READ);

(1 NOTE

You can use https:// bucketname.your-endpoint{test.html in a browser to access files
hosted using the sample code.

15.3 Setting Website Hosting

You can call ObsClient.setBucketWebsite to set website hosting for a bucket.

Configuring the Default Homepage and Error Pages

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

WebsiteConfiguration config = new WebsiteConfiguration();
// Configure the default homepage.
config.setSuffix("index.html");

// Configure the error pages.

config.setKey("error.html");
obsClient.setBucketWebsite("bucketname", config);

Configuring the Redirection Rules

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

WebsiteConfiguration config = new WebsiteConfiguration();
// Configure the default homepage.
config.setSuffix("index.html");

// Configure the error pages.

config.setKey("error.html");

RouteRule rule = new RouteRule();

Redirect r = new Redirect();
rsetHostName("www.example.com");
rsetHttpRedirectCode("305");
r.setRedirectProtocol(ProtocolEnum.HTTP);
r.setReplaceKeyPrefixWith("replacekeyprefix");
rule.setRedirect(r);

RouteRuleCondition condition = new RouteRuleCondition();
condition.setHttpErrorCodeReturnedEquals("404");
condition.setKeyPrefixEquals("keyprefix");
rule.setCondition(condition);
config.getRouteRules().add(rule);

obsClient.setBucketWebsite ("bucketname", config);

2020-02-26

102

Object Storage Service
Java SDK Developer Guide 15 Static Website Hosting

Configuring Redirection for All Requests

Sample code:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

WebsiteConfiguration config = new WebsiteConfiguration();
RedirectAllRequest redirectAll = new RedirectAllRequest();
redirectAll.setHostName ("www.example.com");
redirectAll.setRedirectProtocol(ProtocalEnum.HTTP);
config.setRedirectAllRequestsTo(redirectAll);

obsClient.setBucketWebsite ("bucketname", config);

15.4 Viewing Website Hosting Settings

You can call ObsClient.getBucketWebsite to view the hosting settings of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

WebsiteConfiguration config = obsClient.getBucketWebsite("bucketname");
System.outprintln("\t" + config.getKey());
System.outprintln("\t" + config.getSuffix());
for(RouteRule rule : config.getRouteRules()){
System.outprintin("\t" +rule);

}

15.5 Deleting Website Hosting Settings

You can call ObsClient.deleteBucketWebsite to delete the hosting settings of a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.deleteBucketWebsite("bucketname");

2020-02-26

103

Object Storage Service
Java SDK Developer Guide 16 Event Notification

1 6 Event Notification

16.1 Event Notification Overview

The event notification function allows users to be notified of their operations on
buckets, ensuring users know events happened on buckets in a timely manner.
Currently, OBS supports event notifications through Simple Message Notification
(SMN).

For more information, see Event Notification.

16.2 Setting Event Notification

You can call ObsClient.setBucketNotification to set event notification for a
bucket. Sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketNotificationConfiguration bucketNotificationConfig = new BucketNotificationConfiguration();

TopicConfiguration topicConfig = new TopicConfiguration();
topicConfig.setld("id1");

topicConfig.setTopic("your topic");

topicConfig.getEventTypes().add (EventTypeEnum. OBJECT CREATED ALL);
Filter topicFilter = new Filter();

topicFilter.getFilterRules().add(new FilterRule("prefix", "smn"));
topicFilter.getFilterRules().add (new FilterRule("suffix", ".jpg"));
topicConfig.setFilter(topicFilter);
bucketNotificationConfig.addTopicConfiguration(topicConfig);

obsClientsetBucketNotification("bucketname", bucketNotificationConfig);

16.3 Viewing Event Notification Settings

You can call ObsClient.getBucketNotification to view event notification settings
of a bucket. Sample code is as follows:

2020-02-26 104

https://support.hc.sbercloud.ru/en-us/usermanual/obs/en-us_topic_0045853816.html

Object Storage Service
Java SDK Developer Guide 16 Event Notification

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

BucketNotificationConfiguration config = obsClient.getBucketNotification("bucketname");

System.outprintln(config);

16.4 Disabling Event Notification

To disable event notification on buckets is to call
ObsClient.setBucketNotification to clear all event notification settings. Sample
code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

obsClient.setBucketNotification("bucketname", new BucketNotificationConfiguration());

2020-02-26 105

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

Troubleshooting

17.1 HTTP Status Codes

The OBS server complies with the HTTP standard. After an API is called, the OBS
server returns a standard HTTP status code. The following tables list the categories
of HTTP status codes and the common HTTP status codes in OBS.

e Categories of HTTP status codes

Category Description

1XX Informational response. A request is received by the
server and the server requires the requester to
continue the operation. This category is usually
invisible to the client.

2XX Success. The operation is received and processed
successfully.
3XX Redirection. Further operations to complete the

request are required. This category is usually invisible
to the client.

4XX Client errors. The request contains a syntax error, or
the request cannot be implemented.

5XX Server errors. An error occurs when the server is
processing the request.

e Common HTTP status codes in OBS and their meanings

2020-02-26 106

Object Storage Service

Java SDK Developer Guide

17 Troubleshooting

HTTP Status
Code

Description

Possible Cause

400 Bad
Request

The request parameter
is incorrect.

e Invalid request parameter.

e The consistency check fails
after the client request
carries MD5.

e An invalid parameter is
transferred when the SDK is
used.

e An invalid bucket name is
used.

403 Forbidden

The access is denied.

e The signature carried in the
request header does not
match with the signature
calculated by the OBS
server. Generally, the error is
caused by incorrect AK/SK.

e The account does not have
the permission to access the
requested resource.

e The account is in arrears.

e The bucket space is
insufficient when a quota is
set for the bucket.

e Invalid AK

e The time difference
between the client and the
server is too large. That is,
the time of the server
where the client is located is
not synchronized with the
time of the NTP service.

404 Not Found

The requested resource
does not exist.

e The bucket does not exist.
e The object does not exist.

e The bucket policy
configuration does not exist.
For example, the bucket
CORS configuration or
bucket policy configuration
does not exist.

e The multipart upload does
not exist.

405 Method
Not Allowed

The request method is
not supported.

The requested method or
feature is not supported in the
region where the bucket
resides.

2020-02-26

107

Object Storage Service

Java SDK Developer Guide 17 Troubleshooting

HTTP Status
Code

Description Possible Cause

408 Request Request timed out. The Socket connection

Timeout between the server and client
timed out.
409 Conflict Request conflicts occur. | @ Buckets of the same name

are created in different
regions.

e Deletion of a non-empty
bucket is attempted.

An internal error occurs on the
server side.

An internal error occurs
on the server side.

500 Internal
Server Error

503 Service
Unavailable

The service is
unavailable.

The server cannot be accessed
temporarily.

17.2 OBS Server-Side Error Codes

If the OBS server encounters an error when processing a request, a response
containing the error code and error description is returned. The following table
lists details about each error code and HTTP status code.

HTTP Status Error Code Error Message Solution
Code
301 Moved PermanentRedirec | The requested Send the request
Permanently t bucket can be to the returned
accessed only redirection
through the address.
specified address.
Send subsequent
requests to the
address.
301 Moved WebsiteRedirect The website Put the bucket
Permanently request lacks name in the
bucketName. request and try
again.
307 Moved TemporaryRedirec | Temporary The system
Temporarily t redirection. If the | automatically
DNS is updated, redirects the
the request is request or sends
redirected to the the request to the
bucket. redirection
address.

2020-02-26

108

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

value of Content-
MD?5 does not
match the value
received by OBS.

HTTP Status Error Code Error Message Solution
Code
400 Bad Request | BadDigest The specified Check whether

the MD5 value
carried in the
header is the
same as that
calculated by the
message body.

400 Bad Request

BadDomainName

Invalid domain
name.

Use a valid
domain name.

400 Bad Request

BadRequest

Invalid request
parameter.

Modify the
parameter
according to the
error details
returned in the
message body.

400 Bad Request

CustomDomainAr
eadyExist

The configured
domain already
exists.

It has been
configured and
does not need to
be configured
again.

400 Bad Request

CustomDomainNo
tExist

The domain to be
deleted does not
exist.

The domain is not
configured or has
been deleted. You
do not need to

reach the lower
limit.

delete it.

400 Bad Request | EntityToolLarge The size of the Modify the
object uploaded conditions
using the POST specified in the
method exceeds policy when
the upper limit. posting the object

or reduce the
object size.

400 Bad Request | EntityTooSmall The size of the Modify the
object uploaded conditions
using the POST specified in the
method does not | policy when

posting the object
or increase the
object size.

2020-02-26

109

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

HTTP Status
Code

Error Code

Error Message

Solution

400 Bad Request

IllegallLocation-
ConstraintExcep-
tion

A request without
Location is sent
for creating a
bucket in a non-
default region.

Send the bucket
creation request
to the default
region, or send
the request with
the Location of
the non-default
region.

400 Bad Request

IncompleteBody

No complete
request body is
received due to
network or other

Upload the object
again.

problems.
400 Bad Request | IncorrectNumber- | Each POST Carry a file to be
OfFilesInPost request must uploaded.
Request contain one file to
be uploaded.
400 Bad Request | InvalidArgument | Invalid parameter. | Modify the
parameter

according to the
error details in
the message body.

400 Bad Request

InvalidBucket

The bucket to be
accessed does not
exist.

Try another
bucket name.

400 Bad Request

InvalidBucketNam
e

The bucket name
specified in the
request is invalid,
which may have
exceeded the
maximum length,
or contain special
characters that
are not allowed.

Try another
bucket name.

400 Bad Request

InvalidLocation-
Constraint

The specified
Location in the
bucket creation
request is invalid
or does not exist.

Correct the
Location in the
bucket creation
request.

2020-02-26

110

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

HTTP Status Error Code Error Message Solution
Code
400 Bad Request | InvalidPart One or more Merge the parts
specified parts are | correctly
not found. The according to the
parts may not be | ETags.
uploaded or the
specified entity
tags (ETags) do
not match the
parts' ETags.
400 Bad Request | InvalidPartOrder Parts are not Sort the parts in

listed in ascending
order by part
number.

ascending order
and merge them
again.

400 Bad Request

InvalidPolicyDocu-
ment

The content of
the form does not
meet the
conditions
specified in the
policy document.

Modify the policy
in the constructed
form according to
the error details
in the message
body and try
again.

400 Bad Request

InvalidRedirectLo-
cation

Invalid redirect
location.

Specify the correct
IP address.

400 Bad Request

InvalidRequest

Invalid request.

Modify the
parameter
according to the
error details
returned in the
message body.

400 Bad Request | InvalidRequestBod | The request body | Upload the
y is invalid. The message body in
request requires a | the correct
message body but | format.
no message body
is uploaded.
400 Bad Request | InvalidTargetBuck- | The delivery Configure the

etForLogging

group has no ACL
permission for the
target bucket.

target bucket ACL
and try again.

400 Bad Request

KeyTooLongError

The provided key
is too long.

Use a shorter key.

2020-02-26

111

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

HTTP Status Error Code Error Message Solution
Code
400 Bad Request | MalformedACLErr | The provided XML | Use the correct
or file is in an XML format to
incorrect format retry.
or does not meet
format
requirements.
400 Bad Request | MalformedError The XML format Use the correct

in the request is
incorrect.

XML format to
retry.

400 Bad Request

MalformedLoggin

The XML format

Use the correct

gStatus of Logging is XML format to
incorrect. retry.

400 Bad Request | MalformedPolicy | The bucket policy | Modify the bucket
failed the check. policy according

to the error
details returned in
the message body.

400 Bad Request MalformedQuota | The Quota XML Use the correct

Error format is XML format to
incorrect. retry.

400 Bad Request | MalformedXML An XML file of a Use the correct
configuration XML format to
item is in retry.
incorrect format.

400 Bad Request | MaxMessageLeng | Copying an object | Remove the

thExceeded does not require a | message body
message body in | and retry.
the request.
400 Bad Request | MetadataToolarg | The size of the Reduce the size of
e metadata header | the metadata
has exceeded the | header.
upper limit.
400 Bad Request MissingRegion No region Carry the region

contained in the
request and no
default region
defined in the
system.

information in the
request.

400 Bad Request

MissingRequestBo
dyError

An empty XML
file is sent as a
request.

Provide the
correct XML file.

2020-02-26

112

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

Header

is missing in the
request.

HTTP Status Error Code Error Message Solution
Code
400 Bad Request | MissingRequired- | A required header | Provide the

required header.

400 Bad Request

MissingSecurity-
Header

A required header
is missing in the
request.

Provide the
required header.

special users.

400 Bad Request | TooManyBuckets | You have Delete some
attempted to buckets and try
create more again.
buckets than
allowed.

400 Bad Request | TooManyCustomD | Too many user Delete some user

omains accounts are accounts and try
configured. again.

400 Bad Request | TooManyWrongSi | The request is Replace AK and

gnature rejected due to try again.
high-frequency
errors.
400 Bad Request | UnexpectedConte | The request Try again
nt requires a according to the
message body instruction.
which is not
carried by the
client, or the
request does not
require a message
body but the
client carries the
message body.

400 Bad Request | UserKeyMustBeSp | This operation is Contact the

ecified only available to technical support.

403 Forbidden

AccessDenied

Access denied,
because the
request does not
carry a date
header or the
header format is
incorrect.

Provide a correct
date header in the
request.

2020-02-26

113

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

HTTP Status
Code

Error Code

Error Message

Solution

403 Forbidden

AccessForbidden

Insufficient
permission. No
CORS rule is
configured for the
bucket or the
CORS rule does

Modify the CORS
configuration of
the bucket or
send the matched
OPTIONS request
based on the

not match. CORS
configuration of
the bucket.
403 Forbidden AllAccessDisabled | You have no Change the

permission to
perform the
operation. The
bucket name is

bucket name.

forbidden.
403 Forbidden DeregisterUserld The user has been | Top up or re-
deregistered. register.
403 Forbidden InArrearOrlInsuffi- | The subscriber Top up the
cientBalance owes fees or the account.

account balance is
insufficient, and
the subscriber
does not have the
permission to
perform an
operation.

403 Forbidden

InsufficientStora-
geSpace

Insufficient
storage space.

If the quota is
exceeded, increase
quota or delete
some objects.

403 Forbidden

InvalidAccessKeyl
d

The access key ID
provided by the
customer does
not exist in the
system.

Provide correct
access key ID.

403 Forbidden

NotSignedUp

Your account has
not been
registered with
the system. Only
a registered
account can be
used.

Register OBS.

2020-02-26

114

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

HTTP Status Error Code Error Message Solution
Code
403 Forbidden RequestTimeTooS | The request time | Check whether

kewed

and the server's
time differ a lot.

the difference
between the
client time and
the current time is
too large.

403 Forbidden

SignatureDoesNot
Match

The provided
signature in the

Check your secret
access key and

request does not | signature
match the calculation
signature method.
calculated by

OBS.

403 Forbidden Unauthorized You have not Authenticate your
been real name and try
authenticated in again.
real name.

404 Not Found NoSuchBucket The specified Create a bucket
bucket does not and perform the
exist. operation again.

404 Not Found NoSuchBucketPoli | No bucket policy | Configure a

cy exists. bucket policy.
404 Not Found NoSuchCORSConfi | No CORS Configure CORS
guration configuration first.
exists.
404 Not Found NoSuchCustomDo | The requested Set a user domain
main user domain does | first.
not exist.

404 Not Found NoSuchKey The specified key | Upload the object
does not exist. first.

404 Not Found NoSuchLifecycle- | The requested Configure a

Configuration

lifecycle rule does
not exist.

lifecycle rule first.

404 Not Found

NoSuchUpload

The specified
multipart upload
does not exist.
The upload ID
does not exist or
the multipart
upload job has
been aborted or
completed.

Use the existing
part or reinitialize
the part.

2020-02-26

115

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

HTTP Status
Code

Error Code

Error Message

Solution

404 Not Found

NoSuchVersion

The specified
version ID does
not match any
existing version.

Use a correct
version ID.

404 Not Found NoSuchWebsiteCo | The requested Configure the
nfiguration website does not | website first.
exist.
405 Method Not MethodNotAllowe | The specified The method is not
Allowed d method is not allowed.

allowed against
the requested
resource.

408 Request
Timeout

RequestTimeout

No read or write
operation has
been performed
within the
timeout period of
the socket
connection
between the user
and the server.

Check the
network and try
again, or contact
technical support.

409 Conflict

BucketAlreadyEx-
ists

The requested
bucket name
already exists. The
bucket
namespace is
shared by all
users of OBS.
Select another
name and retry.

Try another
bucket name.

409 Conflict

BucketAlreadyOw
nedByYou

Your previous
request for
creating the
named bucket
succeeded and
you already own
it.

You do not need
to create the
bucket again.

409 Conflict

BucketNotEmpty

The bucket that
you tried to delete
is not empty.

Delete the objects
in the bucket and
then delete the
bucket.

2020-02-26

116

Object Storage Service
Java SDK Developer Guide

17 Troubleshooting

operation is being
performed on this
resource. Retry
later.

HTTP Status Error Code Error Message Solution
Code
409 Conflict OperationAborted | A conflicting Try again later.

409 Conflict

ServiceNotSuppor
ted

The request
method is not
supported by the
server.

Not supported by
the server.
Contact technical
support.

411 Length
Required

MissingContentLe
ngth

The HTTP header
Content-Length is
not provided.

Provide the
Content-Length
header.

412 Precondition
Failed

PreconditionFailed

At least one of
the specified
preconditions is
not met.

Modify according
to the condition
prompt in the
returned message
body.

416 Client
Requested Range
Not Satisfiable

InvalidRange

The requested
range cannot be
obtained.

Retry with the
correct range.

500 Internal
Server Error

InternalError

An internal error
occurs. Retry later.

Contact the
technical support.

Unavailable

ble

overloaded or has
internal errors.

501 Not ServiceNotlmple- | The request Not supported
Implemented mented method is not currently. Contact
implemented by the technical
the server. support.
503 Service ServiceUnavaila- | The server is Try again later or

contact the
technical support.

503 Service
Unavailable

SlowDown

Too frequent
requests. Reduce
your request
frequency.

Reduce your
request frequency.

17.3 SDK Custom Exceptions

SDK custom exceptions (ObsException), thrown by ObsClient, are inherited from
class java.lang.RuntimeException. Exceptions are usually OBS server errors,
including OBS error codes and error information. This facilitates users to locate
problems and troubleshot faults.

ObsException contains the following error information:

2020-02-26

117

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

e ObsException.getResponseCode: HTTP status code

e ObsException.getErrorCode: Error code returned by the OBS server

e ObsException.getErrorMessage: Error description returned by the OBS server
e ObsException.getErrorRequestld: Request ID returned by the OBS server

e ObsException.getErrorHostld: Requested server ID

e ObsException.getResponseHeaders: HTTP response headers

17.4 SDK Common Response Headers

After you call an APl in an instance of ObsClient, an instance of the
HeaderResponse class (or its sub-class) will be returned. It contains information
about HTTP/HTTPS response headers.

Sample code for processing public response headers:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***";

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);
HeaderResponse response = obsClient.createBucket("bucketname");

// Obtain the UUID from the public response headers.
System.outprintln("\t" + response.getRequestld());

obsClient.close();

17.5 Log Analysis

How To Enable Logging

1. Save the log4j2.xml file obtained from the OBS Java SDK package to the
classpath root directory.

2. Call Log4j2Configurator.setLogConfig to specify the save path of log4j2.xml
directly.

(11 NOTE

You can obtain the default log configuration file log4j2.xml from the OBS Java SDK
package, and then modify to customize the file.

Log Path

The log path of OBS Java SDK is specified in log4j2.xml. Logs are saved in the
path represented by system variable user.dir of JDK by default. In general, there
are three logs files as follows:

File Name Description

OBS- Northbound log file, which saves the logs about the
SDK.interface_nor | communication between OBS Java SDK and third-party
th.log applications of users.

2020-02-26 118

Object Storage Service

Java SDK Developer Guide 17 Troubleshooting
File Name Description
OBS- Southbound log file, which saves the logs about the

Log Format

Log Level

SDK.interface_sou | communication between OBS Java SDK and the OBS server.
th.log

OBS- Run log file of the OBS server.
SDK.access.log

The SDK log format is: Log time| Thread number Log levelLog content. The
following are example logs:

#Southbound logs

2017-08-21 17:40:07 133|main|INFO |HttpClient cost 157 ms to apply http request
2017-08-21 17:40:07 133|main|INFO |Received expected response code: true
2017-08-21 17:40:07 133|main|INFO |expected code(s): [200, 204].

#Northbound logs

2017-08-21 17:40:06 820|main|INFO |Storage|1|[HTTP+XML|ObsClient]||||2017-08-21 17:40:05|2017-08-21
17:40:06|||0]|

2017-08-21 17:40:07 136|main|INFO |Storage|1|[HTTP+XML|setObjectAcl||[|2017-08-21 17:40:06|2017-08-21
17:40:07|||0]

2017-08-21 17:40:07 137|main|INFO |ObsClient [setObjectAcl] cost 312 ms

When current logs cannot be used to troubleshoot system faults, you can change
the log level to obtain more information. You can obtain the most information in
TRACE logs and the least information in ERROR logs.

Log level description:

e OFF: Close level. If this level is set, logging will be disabled.

e TRACE: Trace level. If this level is set, all log information will be printed. This
level is not recommended.

e DEBUG: Debugging level. If this level is set, information about logs of the
INFO level and above, HTTP/HTTPS request and response headers, and
StringToSign information calculated by authentication algorithm will be
printed.

e INFO: Information level. If this level is set, information about logs of the
WARN level and above, time consumed for each HTTP/HTTPS request, and
time consumed for calling the ObsClient API will be printed.

e WARN: Warning level. If this level is set, information about logs of the
ERROR level and above, as well as information about some critical events (for
example, the number of retry attempts exceeds the upper limit) will be
printed.

e ERROR: Error level. If this level is set, only error information will be printed.

2020-02-26

119

Object Storage Service
Java SDK Developer Guide 17 Troubleshooting

How to Set

The following sample code shows how to set different levels for the southbound
logs, northbound logs, and OBS server run logs. (For details about log
configuration, see configuration file log4j2.xml.)

<!-- north log -->

<Logger name="com.obs.services.ObsClient" level="INFO" additivity= "false">
<AppenderRef ref="NorthinterfaceLogAppender" |>

</Logger>

<!-- south log -->

<Logger name= "com.obs.services.internal.RestStorageService" level="WARN" additivity= "false">
<AppenderRef ref="SouthinterfaceLogAppender” [>

</Logger>

<!-- access log -->

<Logger name="com.obs.log.AccessLogger” level= "ERROR" additivity="false">
<AppenderRef ref="AccessLogAppender” [>

</Logger>

2020-02-26

120

Object Storage Service
Java SDK Developer Guide 18 FAQs

FAQs

18.1 How Can | Create a Folder?

To create a folder in an OBS bucket is to create an object whose size is 0 and
whose name ends with a slash (/). For details, see Creating a Folder.

18.2 How Can | List All Objects in a Bucket?

For details, see Listing Objects and Listing Versioning Objects.

18.3 How Can | Use a URL for Authorized Access?

See 10.1 Using a URL for Authorized Access.

18.4 How Can | Upload an Object in Browser-Based
Mode?

For details, see Performing a Browser-Based Upload.

18.5 How Can | Download a Large Object in Multipart
Mode?

For details, see Performing a Partial Download.

18.6 What Can | Do to Implement Server-Side Root
Certificate Verification?

For details, see Configuring Server-Side Certificate Verification.

2020-02-26 121

Object Storage Service
Java SDK Developer Guide 18 FAQs

18.7 How Can | Set an Object to Be Accessible to
Anonymous Users?

To enable anonymous users to access an object, perform the following steps:

Step 1 Set the object access permission to public-read by referring to 9.2 Managing
Object ACLs.

Step 2 Obtain the URL of the object by referring to 18.11 How Do | Obtain the Object
URL? and provide it to anonymous users.

Step 3 An anonymous user can access the object by entering the URL on a browser.

--—-End

18.8 How Can | Identify the Endpoint and Region of
OBS?

For details, see Obtaining Endpoints.

18.9 What Is the Retry Mechanism of SDK?

SDK uses the maxErrorRetry parameter configured in 4.3 Configuring an
Instance of ObsClient to retry. The default value for retry times is 3. A value
ranges from 0 to 5 is recommended. If the network connection is abnormal or the
server returns the 5XX error when an ObsClient API is called, the SDK performs an
exponential backoff retry.

NOTICE

e For ObsClient.putObject, when the data source is an InputStream other than
FilelnputStream, the SDK does not retry when an I/O exception occurs because
the data stream cannot be read back. The upper-layer application needs to
retry.

e When ObsClient.getObject is successfully called and ObsObject is returned,
the SDK does not retry when an I/O exception occurs during data reading from
ObsObject.getObjectContent because this situation is beyond the scope of the
processing logic of the SDK. The upper-layer application needs to retry.

18.10 How Do | Obtain the Static Website Access
Address of a Bucket?

After a bucket is configured to work in static website hosting mode, you can use
the following method to combine the static website access address of the bucket.

https:// bucket name.static website hosting domain name

2020-02-26 122

Object Storage Service
Java SDK Developer Guide 18 FAQs

(1J NOTE

e You can click here to view the static website hosting domain names in each region.

18.11 How Do | Obtain the Object URL?

If the uploaded object is set to be read by anonymous users, anonymous users can
download the object through the object URL directly. Methods to obtain the object
URL are as follows:

Method 1: Query by calling the API. After an object is uploaded using the
ObsClient API, PutObjectResult is returned. You can call getObjectUrl to obtain

the URL of the uploaded object. The sample code is as follows:

String endPoint = "https://your-endpoint";

String ak = "*** Provide your Access Key ***';

String sk = "*** Provide your Secret Key ***";

// Create an instance of ObsClient.

ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Call putObject to upload the object and obtain the return result.

PutObjectResult result = obsClient.putObject("bucketname", "objectname", new File("localfile"));
// Read the URL of the uploaded object.

System.outprintin("\t" + result.getObjectUrl());

Method 2: Compose the URL in the format of https://Bucket name.Domain name/
Directory levell Object name.

(11 NOTE

e If the object resides in the root directory of a bucket, its URL does not contain a
directory level.

e You can click here to view the domain names of each region.

18.12 How to Improve the Speed of Uploading Large
Files over the Public Network?

If the size of a file exceeds 100 MB, you are advised to upload the file using
multipart upload over the public network. Multipart upload allows uploading a
single object as parts separately. Each part is a part of consecutive object data. You
can upload parts in any sequence. A part can be reloaded after an upload failure,
without affecting other parts. Uploading multiple parts of an object using multiple
threads concurrently can greatly improve the transmission efficiency.

For details about the code example, see 7.7 Performing a Multipart Upload.

18.13 How Do | Stop an Ongoing Upload Task?

The SDK does not support this feature and secondary development is required. You
can stop an ongoing upload task by stopping the data flow and capturing
exceptions.

2020-02-26 123

https://support.hc.sbercloud.ru/en-us/endpoint/index.html
https://support.hc.sbercloud.ru/en-us/endpoint/index.html

Object Storage Service
Java SDK Developer Guide 18 FAQs

18.14 How Can | Perform a Multipart Upload?

Step 1
Step 2

Step 3

Step 4

In a multipart upload, you can specify a part of the file to be uploaded by
performing the following steps:

You need to initialize an instance of ObsClient by using AK, SK, and endpoint.

Specify the bucket name and object name to initialize
InitiateMultipartUploadRequest. Call
InitiateMultipartUploadRequest.setMetadata to set the metadata of the object
to be uploaded. Then, call ObsClient.initiateMultipartUpload to initialize a
multipart upload task. A globally unique identifier (upload ID) is returned to
identify this task.

Specify the bucket name and object name to initialize UploadPartRequest. Call
UploadPartRequest.setUploadld to set the upload ID to which the part to be
uploaded belongs; call setPartNumber to set the part number of the part; call
setFile to set the large file to which the part belongs; call setPartSize to set the
part size; and then call ObsClient.uploadPart to upload the part. The ETag value
of the uploaded part is returned.

After all parts are uploaded, specify the bucket name, object name, uploadld, and
partEtags to initialize a CompleteMultipartUploadRequest request. Then, call
ObsClient.completeMultipartUpload to merge parts.

--—-End

For details, see 7.7 Performing a Multipart Upload.

18.15 How Can | Perform a Download in Multipart

Mode?

Step 1
Step 2

Step 3

In a multipart download, you can specify the range of data to be downloaded. The
procedure is as follows:

You need to initialize an instance of ObsClient by using AK, SK, and endpoint.

Specify the bucket name and object name to initialize GetObjectRequest. Call
GetObjectRequest.setRangeStart and GetObjectRequest.setRangeEnd to set
the start and end points of the object data to be downloaded.

Call ObsClient.getObject to send the GetObjectRequest request in step 2 to
download the data in multipart mode.

--—-End

For details, see 8.3 Performing a Partial Download.

18.16 How Can | Obtain the AK and SK?

Step 1

Log in to OBS Console. In the upper right corner of the page, hover the cursor
over the username and click My Credentials.

2020-02-26

124

Object Storage Service

Java SDK Developer Guide 18 FAQs

Step 2 On the My Credentials page, select Access Keys in the navigation pane on the
left.

Step 3 On the Access Keys page, click Create Access Key.

Step 4 In the Create Access Key dialog box that is displayed, enter the password and
verification code.

Step 5 Click OK.

Step 6 In the Download Access Key dialog box that is displayed, click OK to save the

Step 7

access keys to your browser's default download path.
Open the downloaded credentials.csv file to obtain the access keys (AK and SK).
----End

For information, see 3.2 Creating Access Keys.

18.17 How Do | Confirm That the Uploaded Object Has
Overwritten the Existing Object in the Bucket with the
Same Name?

After the upload is complete, you can call ObsClient.getObjectMetadata to
obtain the size and last modification time of the target object and compare them
with those in the data source. If the sizes are the same and the last modification
time of the target object is later than that of the data source, the upload is
successful. Otherwise, the upload fails. For details about
ObsClient.getObjectMetadata, see 9.1 Obtaining Object Properties.

18.18 Does the SDK Support Uploading, Downloading,
or Copying Objects in a Batch?

Step 1

Step 2

No.

Currently, the SDK does not provide such APIs. You need to encapsulate the service
codes for uploading, downloading, or copying objects in a batch by yourself. The
procedure is as follows:

List all objects to be uploaded, downloaded, or copied. For details about how to
list objects to be downloaded, see 9.3 Listing Objects.

Call the API for uploading, downloading, or copying a single object for the listed
objects.

--—-End

Sample code:

String endPoint = "https://your-endpoint";
String ak = "*** Provide your Access Key ***";
String sk = "*** Provide your Secret Key ***";
final String bucketName = "bucketname";
// Define the prefix of objects in a bucket.

2020-02-26

125

Object Storage Service

Java SDK Developer Guide

18 FAQs

final String objectPre = "object/";
// Folder to be uploaded
final String localDirPath = "localDirPath";
final List<File> list = new ArrayList<>();
// Scan all objects in the folder.
static void listFiles(File file){
File[] fs = file.listFiles();
assert fs != null;
if (fs.length < 1){
// If an empty folder needs to be uploaded, add it to the list.
list.add(file);
lelse{
for (File f:fs){
if (f.isDirectory()){
listFiles(f);

}
if (fisFile()){
// Add objects to be uploaded to the list.
list.add(f);
}
}
}
}
// Traverse the folder to be uploaded and obtain all objects to be uploaded.
File file = new File(localDirPath);
listFiles(file);

// Create an instance of ObsClient.
final ObsClient obsClient = new ObsClient(ak, sk, endPoint);

// Initialize the thread pool.
ExecutorService executorService = Executors.newFixedThreadPool(20);

// Concurrently upload parts.
for (File f:list){
executorService.execute(() -> {
if (f.isDirectory()){
// For empty folders, create empty folder objects in the bucket.
String remoteObjectKey = objectPre + f.getPath().substring(localDirPath.length() + 1) + "/";
obsClient.putObject(bucketName, remoteObjectKey, new ByteArraylnputStream(new byte[0]));
}else{
String remoteObjectKey = objectPre + f.getPath().substring(localDirPath.length() + 1);
obsClient.putObject(bucketName, remoteObjectKey, new File(f.getPath()));
}
b
}

// Wait until the upload is complete.
executorService.shutdown();
while ('executorService.isTerminated())
{

try

{

executorService.awaitTermination(5, TimeUnit. SECONDS);

catch (InterruptedException e)

{
}

}

// Close obsClient.

try {
obsClient.close();

} catch (IOException e) {
e.printStackTrace();

}

e.printStackTrace();

2020-02-26

126

Object Storage Service
Java SDK Developer Guide 18 FAQs

(1J NOTE

You can use multiple threads to concurrently upload, download, and copy data to improve
efficiency.

2020-02-26 127

Object Storage Service
Java SDK Developer Guide A API Reference

APl Reference

For details about all parameters and definitions of APIs in the OBS Java SDK, see
the Object Storage Service Java SDK API Reference.

2020-02-26 128

https://obs-community.obs.ru-moscow-1.hc.sbercloud.ru/sdk/apidoc/en/java/index.html

Object Storage Service
Java SDK Developer Guide

B Change History

Change History

Release Date

What's New

2020-02-26

This is the first official release.

2020-02-26

129

	Contents
	1 SDK Download Links
	2 Example Programs
	3 Quick Start
	3.1 Before You Start
	3.2 Creating Access Keys
	3.3 Preparing a Development Environment
	3.4 Installing the SDK
	3.5 Obtaining Endpoints
	3.6 Initializing an Instance of ObsClient
	3.7 Creating a Bucket
	3.8 Uploading an Object
	3.9 Downloading an Object
	3.10 Listing Objects
	3.11 Deleting an Object
	3.12 General Examples of ObsClient

	4 Initialization
	4.1 Configuring the AK and SK
	4.2 Creating an Instance of ObsClient
	4.3 Configuring an Instance of ObsClient
	4.4 Configuring SDK Logging
	4.5 Configuring Server-Side Certificate Verification
	4.6 Transparently Transferring the AK and SK

	5 Fault Locating
	5.1 Methods
	5.2 Notable Issues

	6 Bucket Management
	6.1 Creating a Bucket
	6.2 Listing Buckets
	6.3 Deleting a Bucket
	6.4 Identifying Whether a Bucket Exists
	6.5 Obtaining Bucket Metadata
	6.6 Managing Bucket ACLs
	6.7 Managing Bucket Policies
	6.8 Obtaining a Bucket Location
	6.9 Obtaining Storage Information About a Bucket
	6.10 Setting or Obtaining a Bucket Quota
	6.11 Setting or Obtaining the Storage Class of a Bucket

	7 Object Upload
	7.1 Object Upload Overview
	7.2 Performing a Streaming Upload
	7.3 Performing a File-Based Upload
	7.4 Obtaining Upload Progresses
	7.5 Creating a Folder
	7.6 Setting Object Properties
	7.7 Performing a Multipart Upload
	7.8 Configuring Lifecycle Management
	7.9 Performing an Appendable Upload
	7.10 Performing a Resumable Upload
	7.11 Performing a Browser-Based Upload

	8 Object Download
	8.1 Object Download Overview
	8.2 Performing a Streaming Download
	8.3 Performing a Partial Download
	8.4 Obtaining Download Progresses
	8.5 Performing a Conditioned Download
	8.6 Rewriting Response Headers
	8.7 Obtaining Customized Metadata
	8.8 Downloading a Cold Object
	8.9 Performing a Resumable Download

	9 Object Management
	9.1 Obtaining Object Properties
	9.2 Managing Object ACLs
	9.3 Listing Objects
	9.4 Deleting Objects
	9.5 Copying an Object

	10 Authorized Access
	10.1 Using a URL for Authorized Access

	11 Versioning Management
	11.1 Versioning Overview
	11.2 Setting Versioning Status for a Bucket
	11.3 Viewing Versioning Status of a Bucket
	11.4 Obtaining a Versioning Object
	11.5 Copying a Versioning Object
	11.6 Restoring a Versioning Cold Object
	11.7 Listing Versioning Objects
	11.8 Setting or Obtaining a Versioning Object ACL
	11.9 Deleting Versioning Objects

	12 Lifecycle Management
	12.1 Lifecycle Management Overview
	12.2 Setting Lifecycle Rules
	12.3 Viewing Lifecycle Rules
	12.4 Deleting Lifecycle Rules

	13 CORS
	13.1 CORS Overview
	13.2 Setting CORS Rules
	13.3 Viewing CORS Rules
	13.4 Deleting CORS Rules

	14 Access Logging
	14.1 Logging Overview
	14.2 Enabling Bucket Logging
	14.3 Viewing Bucket Logging
	14.4 Disabling Bucket Logging

	15 Static Website Hosting
	15.1 Static Website Hosting Overview
	15.2 Website File Hosting
	15.3 Setting Website Hosting
	15.4 Viewing Website Hosting Settings
	15.5 Deleting Website Hosting Settings

	16 Event Notification
	16.1 Event Notification Overview
	16.2 Setting Event Notification
	16.3 Viewing Event Notification Settings
	16.4 Disabling Event Notification

	17 Troubleshooting
	17.1 HTTP Status Codes
	17.2 OBS Server-Side Error Codes
	17.3 SDK Custom Exceptions
	17.4 SDK Common Response Headers
	17.5 Log Analysis

	18 FAQs
	18.1 How Can I Create a Folder?
	18.2 How Can I List All Objects in a Bucket?
	18.3 How Can I Use a URL for Authorized Access?
	18.4 How Can I Upload an Object in Browser-Based Mode?
	18.5 How Can I Download a Large Object in Multipart Mode?
	18.6 What Can I Do to Implement Server-Side Root Certificate Verification?
	18.7 How Can I Set an Object to Be Accessible to Anonymous Users?
	18.8 How Can I Identify the Endpoint and Region of OBS?
	18.9 What Is the Retry Mechanism of SDK?
	18.10 How Do I Obtain the Static Website Access Address of a Bucket?
	18.11 How Do I Obtain the Object URL?
	18.12 How to Improve the Speed of Uploading Large Files over the Public Network?
	18.13 How Do I Stop an Ongoing Upload Task?
	18.14 How Can I Perform a Multipart Upload?
	18.15 How Can I Perform a Download in Multipart Mode?
	18.16 How Can I Obtain the AK and SK?
	18.17 How Do I Confirm That the Uploaded Object Has Overwritten the Existing Object in the Bucket with the Same Name?
	18.18 Does the SDK Support Uploading, Downloading, or Copying Objects in a Batch?

	A API Reference
	B Change History

